
 - 1 -

LIB 557 (22Dh) – GRAPHWRITER

This document describes version 2.1 of the GRAPHWRITER library. GRAPHWRITER is distributed under the GNU
General Public License (GPL). Copyright © 2001-2002 by Albert Gräf, Johannes Gutenberg University, Mainz,
Germany.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to
the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

INTRODUCTION

GRAPHWRITER is a full-featured graph editor for
the HP 49G calculator. It allows you to create and
edit a graph, represented in adjacency list form, in
a graphical environment. The graph is displayed on
the calculators’ graphics screen (PICT), using a 2D
coordinate system which can be configured by the user. There are two main entry points:
GRW creates a new graph, while GRED edits the graph on stack level 1. Graphs may contain
node and edge labels (as tagged values), and may have multiple edges and loops. A number of
user-level operations for use in programming and on the command line are also provided.

Graph theory and algorithms play a major role in countless applications such as network
design and optimisation, traffic planning, routing, scheduling and visualization, and so graphs
have become one of the cornerstones of applied discrete mathematics and computer science.
GRAPHWRITER makes this interesting area of mathematics come to life on your 49G
calculator. To my knowledge it is the first and only graph editor available for any calculator.

Acknowledgements While writing this program, I have slowly become a more or less regular
member of the HP 48/49 user community in the comp.sys.hp48 newsgroup, and I do not know
whether I could have finished this project without the many tips and advices from
knowledgeable HP users all over the world. Since the first release of GRAPHWRITER, I also
received a lot of encouraging comments and suggestions for further improvements. Moreover,
I’d like to thank Eduardo Kalinowski for his comprehensive book on system RPL
programming, Carsten Dominik for his 49G entry point and choose engine documentation
(and HP49 Emacs of course!), and John H Meyers for generously offering his help to a
hopeless 49G newbie and for his never-failing sense of humour. All this helped me a lot to
complete my educational journey through the strange land of system RPL programming. And
of course thanks are due to Jean-Yves Avenard, Cyrille de Brebisson and all the other talented
developers of HP49 fame at HP’s former (alas!) Australian calculator division, ACO.

GRAPH DATA STRUCTURE

To make full use of this program, it is necessary to become familiar with the basic notions of
graph theory, so let us first introduce the relevant terms and concepts. Graphs are abstract

 - 2 -

mathematical objects consisting of nodes and edges, with the latter connecting the former.
Each edge st has two nodes at its ends, the source node s and the target node t, and we say
that s and t are adjacent to each other, and that the edge st is incident to both s and t. Edges
may also go from a node back to itself (i.e., s = t) in which case they are called loops. In
general, a graph may have several different edges st between the same pair of nodes s and t. If
a graph contains such multiple edges it is also called a multigraph; otherwise we say that the
graph is simple.

Graphs generally come in one of two flavours, namely as directed and undirected graphs. In
directed graphs (or digraphs, for short), edges are oriented from the source to the target node,
while the edges of an undirected graph always constitute bidirectional connections, and thus
an edge st connects both s to t and t to s. In practice, undirected edges st are usually
implemented using pairs of matching directed edges st and ts. This is also the approach taken
in the GRAPHWRITER library. Thus an undirected graph is represented using a corresponding
bidirected graph, which is a directed graph in which for each “out-edge” st there is a
corresponding “ in-edge” ts.

Graphs are usually depicted using diagrams in which nodes are drawn as points, and edges as
(undirected) line segments or (directed) arrows connecting these points. This is exactly the
way that graphs are displayed in GRAPHWRITER. For this purpose, the graph is embedded in
the plane by associating each node with a point (represented as a complex number).

The GRAPHWRITER data structure has been designed with the goal to provide maximum
flexibility with minimum overhead, keeping in mind the tight resources on a calculator. The
graph is therefore stored in an (asymmetric) adjacency list form, i.e., for each node there is a
list in which each entry specifies the target node of an outgoing edge, possibly along with
other information. Thus a graph is a list of lists in the GRAPHWRITER implementation. The
adjacency list data structure provides both a compact representation and fast access to the
outgoing edges of each node; incoming edges can be accessed efficiently using the graph's
reversal, which can be computed using the REVGRAPH command, see PROGRAMMING.
Another advantage of this data structure is that it can represent multigraphs just as well as
simple graphs. Both nodes and edges can be associated with additional data, namely node and
edge labels (besides the node embeddings we already mentioned). In the GRAPHWRITER data
structure the labels are specified as arbitrary tagged values. The syntax of the data structure is
summarized in Fig. 1.

 graph ::= { node-info? … }
 node-info ::= { point? label? … edge-info? … }
 edge-info ::= node | { node label? … }
 label ::= tagged value
 node ::= untagged real
 point ::= untagged complex

Fig. 1 BNF-style grammar rules for the graph data structure. { … } denotes lists,
? optional elements, and | separates different alternatives.

That is, a graph is a (possibly empty) list of node-info structures, where each node-info is a
list consisting of an optional point (encoded as a complex number), followed by a (possibly
empty) sequence of node labels, followed by a (possibly empty) sequence of edge-info
structures. An edge-info, in turn, is either a simple node index, encoded as a real value, or a
list consisting of the node index followed by a (possibly empty) sequence of edge labels. Each

 - 3 -

node index must point to an existing node, i.e., it must be in the range 1..SIZE(graph).
Finally, a label is simply an arbitrary tagged value.

The syntactic validity of a graph structure is always enforced when the graph is built using the
GRAPHWRITER operations. The syntax of graph objects entered directly by the user can be
checked with the GRAPH? predicate, see PROGRAMMING.

Examples: { } , the empty list, also denotes the empty graph, { { } { } { } } is a graph with three
nodes and no edges, and { { 2. 3.} { 1. 3.} { 1. 2.} } is the “complete” bidirected graph with
three nodes, in which all pairs of distinct nodes are connected. Node embeddings and labels
are simply added at the beginning of each node list, as in { { (.5,1.) ::"ONE" 2. 3.} { (.94,.26)
::"TWO" 1. 3.} { (.06,.26) ::"THREE" 1. 2.} } , while edge labels are added at the end of an
edge-info list, as in { { { 1. ::X} } } which is a graph consisting of a single node and a loop
labelled with the variable 'X'.

Labels allow you to store arbitrary data with the nodes and edges of a graph structure. This is
extremely useful if a graph algorithm must work with certain node and edge “properties” ,
such as the edge “ lengths” in the shortest path problem (see the example at the end of this
manual). Labels can also be used to add a short description to a node or edge, to ease
identification. As indicated, labels must always be tagged values, although the tag may be
empty, as in ::value. The tags are used to distinguish different labels, employing them as a
kind of “ field identifier” . For this purpose, the GRAPHWRITER library also provides the
GETLABEL and PUTLABEL operations to directly access the value associated with a given
tag, see PROGRAMMING.

INVOCATION

Once the GRAPHWRITER library has been installed, its operations can be accessed as usual,
either through the catalog (

�
), the library menu (� �����), or by typing the command

names using the alphabetic keys. If you are working a lot with this library, it is best to have
the library menu (557 MENU) assigned to a key; I have it on � -hold-� . This can be
done conveniently using Wolfgang Rautenberg’s KEYMAN program.

To start GRAPHWRITER with a fresh and empty graph, simply execute the GRW command
with no arguments. To edit an existing graph, put it into stack level 1 and invoke the GRED
command. (We generally assume that the calculator is operated in RPN mode. In algebraic
mode, you would have to enter the command GRED(graph) to start the editor.) To exit
GRAPHWRITER and place the edited graph on the stack press the 	 key.
 backs out
abandoning your changes (the editor asks for confirmation when you are about to do that and
the graph has been modified).

Your graph may contain unembedded nodes, i.e., nodes which do not have coordinates
assigned to them; these will be embedded automatically. Currently GRAPHWRITER uses
random points for missing embeddings, which is not very pretty, but you can easily rearrange
the nodes to your heart’s content using the MOVE operation once the graph has been loaded
into the editor. Or you can write a small program to automate this task. Of course, when the
graph has gone through the editor it will always have a complete embedding attached to it.

As of version 2.0, GRAPHWRITER can show the node and edge labels in your graph, but you
should note that, for the sake of efficiency and to reduce clutter on the small LCD screen, the
graphical display is currently restricted to the first label of each node or edge (also called the

 - 4 -

default label), and, in the case of multigraphs, only the default label on the first edge between
a given pair of nodes is displayed. Moreover, only the label values will be shown, without the
tags, and label values are truncated to at most seven characters. GRAPHWRITER also allows
you to turn off the node or edge label display, or both, which is useful when the screen
becomes too crowded. As in earlier versions, the complete set of node and edge labels can be
accessed in the browser, the integrated textual editor providing a choose/inform box interface.

MENU OPERATIONS

When GRAPHWRITER starts, it displays its own menu from which you can invoke the
following operations:

� �������

: Enters NODE mode, in which you can place nodes at the current cursor position.
	 places a node (unless there already is a node at the current position, in which case the
editor beeps to signal an error),
 exits from NODE mode.

� ��� � � : Enters EDGE mode, in which you can
connect nodes with edges. Pressing

��� � � marks the
current node (indicated by a tiny cross), after
which you can create edges to other nodes by
putting the cursor on the target node and pressing
	 . 	 creates a bidirected edge between
source and target mode, while � 	 and � 	 produce directed edges going to the source or target node, respectively. New nodes
are created automatically if the cursor is not over an existing node when any of these
operations is executed.
 exits from EDGE mode.

We remark that EDGE mode deliberately forbids you to create a new edge on top of an
existing one (the small screen and the lack of visual cues would allow this to happen much too
easily by accident), so all graphs created with this operation alone will be simple. To create
multigraphs you must hence use the edit operations in the browser (discussed below).

� � ��� � � : This is a variation of the EDGE command which enters so-called PATH
mode. While normal EDGE mode allows you to draw edges between a single source and
multiple targets, placing an edge in PATH mode causes the target node to become the new
source. You can use this to produce a chain of edges (called a path in graph theory) very
quickly.

	
����

: Invokes the “browser” choose box, which allows you to perform selections, and
view, locate and edit nodes and edges in a textual format, using inform boxes for data entry.
See closer description below.

 ���������

: Enters CURSOR mode, in which the current cursor coordinates are shown in the
menu line, as in the other modes. 	 places the current position in the stack (above the
edited graph), as a complex value.
 exits CURSOR mode.

� �������

: Move either the current node or the selection to a new position. Pressing
� �������

marks the current node, after which you can move the cursor to the desired target position.
	 completes the move,
 aborts it.

 - 5 -

� �����
: Delete the current node or the selection (as well as all incident edges), after

prompting for confirmation.

The remaining operations are on the second menu page. As usual, you can switch between the
menu pages with the � and � keys.

�
������ � : Delete the entire graph, with confirmation.

� ���������

: Enters the setup form, which allows you to configure the coordinate system
(range of X and Y coordinates, X and Y resolution in units/pixel), the factor for zoom
operations, various display options controlling the display of node numbers and labels and
edge labels, and “entry mode”. The latter option, when checked, causes the editor to prompt
you with an input form when new nodes and edges are created. This is useful if you want to
enter the node and edge labels right away when adding nodes and edges, instead of doing that
later in the browser.

The settings made in SETUP are stored in the
GRWPAR variable when the form is completed
with

� ��	
 or 	 . The editor looks for the

settings in this variable at startup. If the variable is
not found in the current or some parent directory,
some hard-coded defaults are used, as shown in the
picture on the right.

	 ��� ��
�� : Places a copy of the current graph display on the stack.

 ���������

: Places the number of the node below cursor on the stack.

� ��� � 	�� : Places the current selection on the stack, as a list of node numbers.
 � � ��� � 	 : Sets the selection from a node list on the stack.

On the third menu page you find the obligatory

� �������
 function which displays some help

screens and copyright information.

KEYBOARD OPERATIONS

CURSOR MOVEMENT: The cursor keys
 � � � move the cursor around on the
screen as usual, with scrolling if necessary. The shifted cursor keys also have their usual
meaning (� : move cursor to the edges of the current window,

�
: move to the edges of

the entire picture). These keys work in all modes.

ZOOMING: � zooms in, � zooms out, and the � key reverts to the default settings,
as given by the GRWPAR variable. Moreover, � � redraws the screen using the current
display configuration, which comes in handy if the display looks garbled. The right-shifted
variations of these keys can be used to zoom to various types of “ full-screen” displays: � � makes the largest and

� � the smallest of the dimensions fit into the display,
while keeping the same resolution for X and Y.

� � makes the whole display fit on the
screen (possibly using different resolutions for X and Y). These keys work in all modes.

 - 6 -

MAKING SELECTIONS: The � key toggles the selection status of the node under the
cursor. If no node is under the cursor, � deselects all nodes. Selected nodes are drawn as
circles, while unselected nodes are drawn as solid bullets. Nodes can also be selected in the
browser, see below.
 �

: Keyboard shortcut for the SETUP menu operation.
 �

: Toggles the node and edge label display. This key works in all modes, and is used to
quickly enable or disable the label display.
 �

: Keyboard shortcut for the CAT menu operation. This key works in all modes. However,
when in one of the special modes (NODE, EDGE, CURSOR, etc.), only a restricted form of
the browser is available, which allows you to browse the graph and locate nodes, but not to
edit the graph.
 �

 / � : Keyboard shortcuts for the DEL/CLEAR menu operations.
 �

 / � :
�

 puts the subgraph “ induced” by the selected nodes on the stack, i.e., the
graph consisting of all selected nodes and incident edges; if no nodes are selected then the
entire graph is copied. � is used to retrieve a graph from the stack and place it to the right
and below the current cursor position; it also sets the selection to the newly created nodes.
These operations provide a convenient means to copy and paste subgraphs between different
graphs.
 �

: Visit the stack. This allows you to inspect, rearrange and edit the objects in the stack
(excluding the edited graph) while the editor is running, which is useful in conjunction with �

, � and the other stack commands in the second page of the main menu, like
� ��� � 	�� and

� � ��� � 	 . If the stack is currently empty, the editor beeps, indicating an
error condition.

THE BROWSER

The editor also provides a choose/inform box interface in which you can view and edit the
graph. This environment, called the browser, is started with the CAT menu command. The
browser can also be invoked from the special modes (NODE, EDGE, CURSOR, etc.) using
the

�
 key. However, in these modes the browser only provides a restricted set of

operations (no selection and editing).

NODE BROWSER

When started, the browser first shows a choose box
with all nodes of the graph (with the current node
selected, if any). This part of the browser is also
called the node browser, in which you can choose
a node and perform any of the following
operations:

� ���	���

: Edit the position and labels of the current node. The labels are entered as a list of
tagged values. You can also enter a single (non-list) value, which will be converted to a label
list automatically (in this case a null tag will be added if the tag is missing).

 - 7 -

� �����

: Create a new node.

	 �����

: Delete the current node or the selection
(with confirmation).

 � � ��� � : Reorder the nodes according to the
current selection order. This works analogous to
the 49G filer, i.e., the selected nodes are placed first, in the order in which they were selected,
followed by the unselected ones. The browser shows the current selection order by numbering
the selected nodes accordingly.

�
�����
��

 /
 : Exit the browser without changing the cursor position.
 � ��	

 / 	 : exit the browser, and put the cursor on the selected node.

� : Bring up another choose box for the edges of the selected node (see the discussion of the
edge browser below).

� : Select/deselect the current node.
 �

: Put the current node (i.e., its node-info structure) on the stack.
 �

: Visit the stack.

EDGE BROWSER

Just like the node browser, the edge browser allows
you to edit or delete existing and create new
entries, and change the order in which the entries
are listed.

�����
��
 /
 and

��	
 / 	 also work as

in the node browser, but
��	

 sends the cursor to the
target node of an edge. The edge browser provides
the following operations:

� ���	���

: edit the target node and labels of the current edge.

� �����

: create a new edge. With this operation
you can also create multiple edges to the same
target node, which is not possible with the main
menu’s EDGE operation.

	 �����

: delete the current edge or the selection
(with confirmation).

 � � ��� � : reorder the edges according to the current selection order.

�
�����
��

 /
 : exit the browser without changing the cursor position.
 � ��	

 / 	 : exit the browser, and put the cursor on the target node of the selected edge.

 - 8 -

 : Return to the source node of the current edge in the node browser.

� : Show the target node of the current edge in the node browser.

� : Select/deselect the current edge.
 �

: Put the current edge (i.e., its edge-info structure) on the stack.
 �

: Visit the stack.

By default, the EDIT/ADD/DEL operations of the edge browser will operate on bidirected
edges, meaning that the editor will create or update both the outgoing source-target edge and
its reversal (i.e., the corresponding incoming target-source edge). More precisely, the ADD
operation will create edges in pairs of matching in- and out-edges, while the EDIT and DEL
operations modify and delete both the current out-edge and its reversal (if any).

(We must clarify what is meant by “ the” reversal of an edge here, which is not obvious in the
case of a multigraph; for instance, consider the case that there is a single out-edge st and two
matching in-edges ts. GraphWriter adopts the convention that in- and out-edges must not
necessarily be in 1-1 correspondence, so any matching in-edge will do. In the current
implementation the editor simply picks the first matching in-edge, i.e., the first edge going
from target to source which has the same label list as the out-edge. If you want to enforce that
in- and out-edges are in 1-1 correspondence, you can always achieve this by adding suitable
edge labels.)

If you want to create or modify only the outgoing edge, use the right-shifted softkeys instead.
Thus,

� � �����
 creates a directed edge going out of the current node, and

� � ���	���
 /

� 	 �����
 only changes/deletes the outgoing edge but not its reversal.

PROGRAMMING

The GRAPHWRITER library also provides the following commands for creating, inspecting and
manipulating a graph from the command line or through a RPL program. We give the stack
diagram of each operation together with a short description. For a definition of the various
types of parameters please refer to Fig. 1 in GRAPH DATA STRUCTURE. In addition,
nodes, labels and edge-infos are used to denote (possibly empty) lists of node indices, labels
and edge-info structures, respectively.

For the sake of efficiency, most operations perform syntax checking of the graph data
structure in a “ lazy” manner. This means that a syntactic error in the graph data structure will
generally not be caught until an operation actually inspects that part of the data structure, in
which case a #203 “Bad Argument Value” error is generated. You can also verify the
syntactic validity of a graph beforehand using the GRAPH? predicate.

You will find that in the library menu the operations have mostly been arranged into groups of
related operations on different menu pages, following the categories listed below.

 - 9 -

SYNTAX PREDICATES

The following predicates are used to check the syntax of graphs and their components.

GRAPH? graph → 0 / 1

 Check whether graph forms a valid graph structure.

NODE? node-info → 0 / 1

 Check whether node-info forms a valid node structure.

EDGE? edge-info → 0 / 1

 Check whether edge-info forms a valid edge structure.

GRAPH CONSTRUCTION

These operations are for generating graphs with a given number of nodes. In the following, n
denotes a positive integer, and p a probability value (0 ≤ p ≤ 1).

NGRAPH n → graph

 Creates an edgeless graph with n nodes.

RANGRAPH n p → graph

 Creates a random simple digraph with n nodes and edge probability p.

RANGRAPH2 n p → graph

 Creates a random simple bidirected graph with n nodes and edge

probability p.

OPERATIONS ON NODES AND EDGES

These operations allow you to create, delete and modify nodes and edges in a graph.

GETNODE graph node → node-info

 Returns the node-info structure for the given node.

PUTNODE graph node node-info → graph′

 Replaces the node-info structure of the given node. The node-info

structure must be in the format described in GRAPH DATA
STRUCTURE.

ADDNODE graph node-info → graph′

 - 10 -

 Adds a new node to the graph. The node-info structure must be in the
format described in GRAPH DATA STRUCTURE. The new node is
added at the end of the graph, so its number will be SIZE(graph)+1.
If any edges are specified, their target nodes must exist in the
resulting graph, i.e., they must be in the range from 1 to
SIZE(graph)+1.

ADDNODE2 graph node-info → graph′

 Like ADDNODE, but also creates the reversals of the given edges.

This is to be used when a bidirected graph is to be constructed.

DELNODE graph node → graph′

 Deletes the given node and all incident edges. The remaining nodes

are renumbered accordingly.

ADDEDGE graph node edge-info → graph′

 Creates a directed edge emanating from node with the target and

labels specified in edge-info, which must be in the format described
in GRAPH DATA STRUCTURE. The edge will be added at the end
of the current list of edges for node.

ADDEDGE2 graph node edge-info → graph′

 Creates a bidirected edge (given edge plus its reversal, if not a loop).

DELEDGE graph node1 node2 → graph′

 Deletes the (directed) edge from node1 to node2. If more than one

edge exists between the given nodes, the first such edge is deleted.

DELEDGE2 graph node1 node2 → graph′

 Deletes an edge and its reversal (if present).

GENERAL GRAPH OPERATIONS

Some general operations for graph manipulation.

NODES graph → nodes

 Returns the list of all nodes of the graph, i.e., { 1 … SIZE(graph) } .

REVGRAPH graph → graph′

 Reverses a graph (makes the source of each edge its target and vice

versa).

 - 11 -

SORTGRAPH graph → graph′

 Sorts a graph. The edges of each node are sorted in ascending order

with respect to the target node numbers. This operation does stable
sorting, hence edges with the same target node will retain their
relative positions.

SUBGRAPH graph nodes → graph′

 Computes the subgraph induced by the given nodes. The nodes will

be numbered in the order in which they are listed in the nodes list
(which must not contain duplicates). Hence this operation can also be
used to reorder the nodes of a graph.

ADDGRAPH graph1 graph2 → graph

 Disjoint union of two graphs. Adds graph2 to graph1, renumbering

the nodes of graph2 accordingly. The resulting graph has
SIZE(graph1) + SIZE(graph2) nodes.

JOINGRAPH graph1 graph2 → graph

 Joins two graphs. Merges graph2 into graph1 by combining the labels

and edges of corresponding nodes in both graphs. The resulting graph
has MAX(SIZE(graph1), SIZE(graph2)) nodes.

OPERATIONS ON NODE AND EDGE STRUCTURES

The following operations are used to create node and edge structures and break up existing
structures into their component values. No syntax checking is performed on the structure or
component values, but you can check the structures explicitly with the NODE? and EDGE?
predicates (see above).

NODE→→→→ node-info → point labels edge-infos

 Breaks up a node structure into its components.

→→→→NODE point labels edge-infos → node-info

 Creates a node structure from its components.

EDGE→→→→ edge-info → node labels

 Breaks up an edge structure into its components.

→→→→EDGE node labels → edge-info

 Creates an edge structure from its components.

 - 12 -

NODE AND EDGE ATTRIBUTES

These operation provide quick access to the various node and edge attributes.

ADJ node-info → nodes

 Returns the list of adjacent nodes (EDGES with labels stripped).

ADJ? node-info node → 0 / 1

 Check whether there is an edge to the given node.

EDGES node-info → edge-infos

 Returns the list of all edges.

POINT node-info → point

 Returns the embedding of a node (NOVAL if none).

TARGET edge-info → node

 Returns the target node of an edge.

The following operations work on both node and edge structures. The tag argument may be
specified either as an identifier or a string.

LABELS node-info → labels
 edge-info → labels

 Returns the labels of a node or edge.

GETLABEL node-info tag → value
 edge-info tag → value

 Returns the value of the first label with the given tag (NOVAL if not

found).

PUTLABEL node-info tag value → node-info′
 edge-info tag value → edge-info′

 Sets the value of the first label with the given tag.

DELLABEL node-info tag → node-info′
 edge-info tag → edge-info′

 Deletes all labels with the given tag.

 - 13 -

EXAMPLE – DIJKSTRA’S ALGORITHM

The program given below is a straightforward implementation of Dijkstra's classical shortest
path algorithm in RPL, using the data structure and some of the operations of the
GRAPHWRITER library. The present implementation is not fully optimised in that it repeatedly
scans the entire “queue” (which is simply a RPL list) of unprocessed nodes for the node
which currently is at the smallest distance from the source node. A more sophisticated version
might use a kind of “heap” data structure for speeding up this part of the algorithm. A second
table data structure (again implemented as a list) records the current distances from the source
node, together with the predecessor nodes on a shortest path. This table thus encodes the
“shortest path tree” . (For an explanation of these concepts, please refer to the description of
Dijkstra’s algorithm in any good textbook on graph or network algorithms.)

Note that this algorithm only works correctly if all edge lengths are nonnegative. Edge lengths
are encoded as :L: labels on the edges of the graph, and may be infinite (these edges are
effectively treated as nonexistent) or missing (in which case 1 is assumed as the default
length). As implemented, the algorithm searches for a single path from a given source to a
given target node, but the modifications for computing shortest paths to all nodes of the graph
in a single run are fairly straightforward, and are left as an exercise to the interested reader.

You can find the RPL source of the algorithm in the
GRAPHWRITER package, along with the sample graph
shown on the right, which is ready to be used with the
program. Having transferred the program and the graph to
your calculator, you can give it a try. For instance, what is
the shortest path from node 2 to node 8?

To solve this problem, first recall the contents of the graph variable ‘G’ , enter the source and
target node indices, and finally execute the DIJKSTRA program. Assuming that the program
and the graph can be accessed from the VAR menu using, say, the

�
 and

�
 keys, we

can type:
 � � 	 � 	 �

The program now starts searching for the shortest
path, and displays the nodes considered during the
search in the top display line. Finally, the result { 2.
1. 4. 5. 8.} will be displayed along with the length
of the path, 11.

Now is the time to take the editor for a spin and
have a look at the solution! Press � once to
delete the path length value,

�
 to recall the

graph to stack level 1, and invoke the GRED
command. In the editor you can highlight the nodes
on the path we just computed simply by recalling
the selection from the stack with the �� � ��� � 	 menu function.

 - 14 -

RPL Program DIJKSTRA

« → G s t «

 s 0. RND ' s ' STO t 0. RND ' t ' STO
 @ i f you l i ke, check par amet er s her e. . .

 @ l i st of nodes yet t o be pr ocessed
 G NODES

 @ i ni t i al i ze t he queue of { di st node pr ed} t r i pl es
 DUP 1. « ∞ SWAP 0. 3. →LI ST » DOLI ST
 s 0. s 0. 3. →LI ST PUT @ set sour ce node di st ance t o 0

 @ i ni t i al i ze t he shor t est pat h t r ee (t abl e of { pr ed di st } pai r s, a
 @ zer o pr ed val ue i ndi cat es t hat t he node has not been r eached yet)
 { 0. 0. } G SI ZE NDUPN →LI ST

 s @ i ni t i al c l osest node

 → U Q SP pos «

 WHILE pos 0. ≠ REPEAT

 @ get t he c l osest node and r emove i t f r om t he queue and t he node l i s t
 Q pos GET
 Q 1. pos 1. - SUB Q pos 1. + Q SI ZE SUB + ' Q' STO
 U 1. pos 1. - SUB U pos 1. + U SI ZE SUB + ' U' STO
 OBJ→ DROP → di st node pr ed «

 @ gi ve some f eedback whi l e we' r e sear chi ng
 " Sear chi ng. . . " node + " � " + 1. DI SP

 @ updat e t he shor t est pat h t r ee
 ' SP' node pr ed di st 2. →LI ST PUT

 IF node t == THEN
 @ we r eached t he t ar get , set pos t o 0. t o i ndi cat e t hat we' r e
 @ done
 0. ' pos ' STO
 ELSE
 @ i t er at e over al l edges of t he cur r ent node
 G node GETNODE EDGES
 IF DUP { } == THEN DROP @ empt y edge l i s t
 ELSE
 1. «
 DUP TARGET DUP U SWAP POS
 IF DUP 0. == THEN
 DROP DROP2 @ ski p t hi s t ar get
 ELSE
 @ st ack now: edge t ar get t ar get - pos
 ROT ' L' GETLABEL @ edge l engt h
 EVAL @ handl e al gebr ai cs/ i nf t y
 IF DUP NOVAL == THEN
 DROP 1. @ def aul t val ue
 END
 IF DUP ∞ < THEN @ f i ni t e- l engt h edge?
 di st + @ sour ce- di st + edge l engt h
 Q PI CK3 GET HEAD @ cur r ent t ar get - di st val ue
 → t ar get pos newl en ol dl en «
 IF newl en ol dl en < THEN
 @ updat e queue ent r y
 ' Q' pos newl en t ar get node 3. →LI ST PUT
 END @ newl en < ol dl en?
 »
 ELSE DROP DROP2
 END @ edge l engt h < ∞?

 - 15 -

 END @ t ar get node not i n U?
 » DOLI ST
 END @ empt y edge l i s t ?
 @ l ocat e t he next - c l osest node i n t he queue
 0. ' pos ' STO ∞ → mi n «
 Q 1. «
 IF HEAD DUP mi n < THEN
 ' mi n' STO NSUB ' pos' STO
 ELSE DROP
 END
 » DOSUBS
 »
 END @ at t ar get node?
 »

 END @ whi l e pos<>0

 @ const r uct t he pat h f r om t he shor t est pat h t r ee; we st ar t at t he
 @ t ar get node and t r avel back al ong t he pr edecessor l i nks i n t he
 @ SP t r ee

 t SP OVER GET OBJ→ DROP 1. → pr ed l en count «
 WHILE pr ed 0. > REPEAT
 pr ed 1. ' count ' STO+
 SP pr ed GET OBJ→ DROP2 ' pr ed' STO
 END
 IF DUP s == THEN
 count →LI ST REVLI ST l en
 ELSE
 count DROPN ∞
 END
 »

 »
»
»

	LIB 557 (22Dh) – GRAPHWRITER
	INTRODUCTION
	GRAPH DATA STRUCTURE
	INVOCATION
	MENU OPERATIONS
	KEYBOARD OPERATIONS
	THE BROWSER
	NODE BROWSER
	EDGE BROWSER

	PROGRAMMING
	SYNTAX PREDICATES
	GRAPH CONSTRUCTION
	OPERATIONS ON NODES AND EDGES
	GENERAL GRAPH OPERATIONS
	OPERATIONS ON NODE AND EDGE STRUCTURES
	NODE AND EDGE ATTRIBUTES

	EXAMPLE – DIJKSTRA’S ALGORITHM

