Proceedings of the 1° International Faust Conference (IFC-18), Mainz, Germany, July 17-18, 2018

BUILDING FAUST WITH CMAKE

Dominique Fober™

GRAME
Lyon, France
fober@grame.fr

ABSTRACT

This paper describes the new Faust building system that is now
based on CMakel This new building system preserves the pre-
vious Makefile approach as much as possible while offering far
more flexibility and above all, a platform independent solution for
compiling the various faust components. The paper gives practical
information to address basic uses of the building system as well as
for advanced and custom settings.

1. INTRODUCTION

While Faust 1 was nearly free of dependencies, the current version
can be more challenging to compile, due in particular to the LLVM
dependency. Moreover until version 2.5.23 the building system
was based on Make and compiling Faust for non Unix systems like
Windows was quite complicated. For all these reasons we decided,
in November 2018, to develop a new build system for Faust, based
on CMake.

CMake offers a great flexibility, both in defining the targets
to be compiled as well as selecting the different backends to be
included in each target. However, this flexibility is based on a
set of states (cached by CMake), which can sometimes make the
compilation process a bit obscure.

The goal of this paper is to give you some practical informa-
tion about this new building system. The first section explains how
to do a basic Faust installation, when LLVM is not required. The
second section gives details on all the available options.

2. BASIC FAUST INSTALLATION

If you don’t have special needs, if you essentially want to compile
Faust code to your favorite target, then the new building system is
as simple to use as the old one. In this section we will explain all
the needed steps to install and run Faust on a fresh Ubuntu 16.04
distribution.

2.1. Compiling the compiler

The first step is to compile Faust itself. Let’s start with the mini-
mal requirement in terms of packages: the building tools, git and
libmicrohttpd.

$ sudo apt-get update
$ sudo apt-get install -y build-essential
cmake git libmicrohttpd-dev

‘We can now clone the Github repository of Faust

* This work was supported by the XYZ Foundation
T This guy is a very good fellow
¥ This guy is a very good fellow

Yann Orlarey

GRAME
Lyon, France
orlarey@grame. fr

IFC-1

Stephane Letz*

GRAME
Lyon, France
letz@grame.fr

$ git clone https://github.com/grame-cncm/
faust.git

then compile and install Faust:

$ cd faust
$ make
$ sudo make install

Once the installation has been completed, we can check it:
$ faust -v

This will give you the version of the Faust compiler with a list of
the available backends:

FAUST DSP to C, C++, Java, JavaScript,
old C++, asm.js, WebAssembly (wast/wasm)
compiler, Version 2.5.30
Copyright (C) 2002-2018, GRAME - Centre
National de Creation Musicale. All
rights reserved.

As you can note the LLVM backend is not installed in this basic
setup. You will typically need LLVM if you want to compile the
library version of Faust. A complete installation is described in the
next section.

We dont have any audio development package installed, but
we can nevertheless use Faust to compile some of the examples to
C++ code, at least to check that the compiler works:

$ faust examples/generator/noise.dsp

The above command will compile noise.dsp and generate a C++
implementation on the standard output.

This C++ code has to be embedded into an architecture file
(that describes how to relate the audio computation to the external
world) before beeing compiled into standalone application or an
audio plugin. For that you will need to install some development
packages depending of your targets.

2.2. Compiling Alsa and JACK applications

In order to compile Faust programs to Alsa or JACK applications
for Linux you need to install the corresponding development pack-
ages:

$ sudo apt-get install -y libasound2-dev
libjack-jackd2-dev libgtk2.0-dev

It is now possible to compile an Alsa or JACK application with
the various possible options:

$ faust2alsa -osc -httpd -midi foo.dsp
$ faust2jack -osc -httpd -midi foo.dsp

http://grame.fr
mailto:fober@grame.fr
http://grame.fr
mailto:orlarey@grame.fr
http://grame.fr
mailto:letz@grame.fr
https://cmake.org/

Proceedings of the 1° International Faust Conference (IFC-18), Mainz, Germany, July 17-18, 2018

2.3. Compiling QT applications

Instead of using Gtk you may want to use QT. In this case the QT4
development package needs to be installed:

$ sudo apt-get install -y libasound2-dewv
libjack-jackd2-dev libgt4-dev
Then it is possible to compile for Alsa/QT and JACK/QT:

$ faust2algt -midi -httpd -osc foo.dsp
$ faust2jagt -midi -httpd -osc foo.dsp

2.4. Compiling LADSPA, DSSI and LV2 plugins

Linux supports several formats of plugins including LADSPA, DSSI
and LV2.

$ sudo apt-get install -y ladspa-sdk

$ sudo apt-get install -y dssi-dev

$ sudo apt-get install -y lv2-dev libboost-
dev

These plugins can now be compiled:

$ faust2ladspa good.dsp
faust2dssi good.dsp
$ faust21v2 good.dsp

U

2.5. Compiling for SuperCollider

In order to compile SuperCollider UGens you need to install the
SuperCollider development package. For some reason the devel-
opment package requires jackd to be installed and the jackd pack-
age requires a user response! In some situation (building a Docker
image) this is a problem. The solution to have a fully silent instal-
lation is to set DEBIAN_FRONTEND to noninteractive.

$ sudo DEBIAN_FRONTEND=noninteractive apt-—
get install -y supercollider-dev
$ faust2supercollider foo.dsp

2.6. Compiling for CSound

Compile for CSound only requires to install the libcsound devel-
opment package.

$ sudo apt-get install -y libcsoundé64-dev
$ faust2csound good.dsp

2.7. Compiling for Pure Data

The puredata-dev package is enough to compile Pure Data exter-
nals. But they will lack the nice UI patch generated by Albert
Graef’s faust2pd.

$ sudo apt-get install -y puredata-dev
In this case:
$ faust2puredata foo.dsp

will only generates the external object foo~.pd_linux.
In order to benefit of faust2pd you need to install the pro-
gramming language pure it depends on:

IFC-2

$ sudo apt-get install -y software-—
properties—-common

$ sudo add-apt-repository -y "ppa:dr-graef/
pure-lang.xenial"

$ sudo apt-get update

$ sudo apt-get install -y faust2pd faust2pd
—extra

Now faust2puredata will detect faust2pd and:
$ faust2puredata foo.dsp

will produce the external object foo~.pd_linux and the Ul
patch foo.pd.

2.8. Compiling a VST plugin for Linux

In order to compile vst plugins for Linux you need to install the
VST SDK provided by Steinberg.

$ sudo apt-get install -y unzip

$ wget http://www.steinberg.net/
sdk_downloads/
vstsdk365_12_11_2015_build_67.zip

$ sudo unzip vstsdk365_12_11_2015_build _67.
zip —-d /usr/local/include/

$ sudo mv /usr/local/include/VST3\ SDK /usr
/local/include/vstsdk2.4

Once this is done:
$ faust2faustvst foo.dsp

will produce foo.so a VST plugin for Linux.

3. ADVANCED FAUST INSTALLATION

The Faust distribution includes the Faust compiler, but also other
elements that you may want to compile, in particular libfaust, the
library version of the Faust compiler. Moreover, the way these
elements are compiled can be configured with appropriate files.

3.1. Faust backends

The Faust compiler can produce various languages on output. Sup-
port for these languages is provided using backends that may or
may not be embedded into the compiler or into the faust libraries.
This is intended to simplify the compilation process: some back-
ends (like LLVM) proved to be a bit complex to compile, some
others are not supported by all compilers (like the interpreter back-
end). In addition, selecting only the set of backends to be used, can
reduce significantly the size of the resulting binary.

3.1.1. Selecting your backends

The backends selection is described using backends files
which are actually cmake files that simply populate the cmake
cache. These files are located in the backends folder. They
consist in a matrix where each line corresponds to a language sup-
port and where the columns select (or discard) the corresponding
backend for each binary output i.e.:

o the Faust compiler,

o the libfaust static library,

Proceedings of the 1° International Faust Conference (IFC-18), Mainz, Germany, July 17-18, 2018

o the libfaust dynamic library,
o the libfaust asmjs library,
o the libfaust wasm library

The example in figure [I] selects the ASMJS backend for the
asmjs library, the cpp backend for the compiler and the faust static
and dynamic libraries and discards the interpreter backend.

A BACKENDS option is provided to select a backend file using
make e.g.:

make BACKENDS=backends.cmake

By default the selected backends are taken from backends . cmake
Note that make always looks for the backend files in the backends

folder.
You can get similar results using direct cmake invocation:

cd faustdir
cmake —-C ../backends/backends.cmake

The —-C file option instructs cmake to populate the cache
using the file given as argument.

Note that once the backends have been selected, they won’t
change unless you specify another backend file.

3.1.2. Review compiled backends

On output of the project generation, cmake prints a list of all the
backends that will be compiled for each component. Below you
have an example of this output:

o In target faust: include ASMIS backend

e In target faust: include C backend

o In target faust: include CPP backend

e In target faust: include OCPP backend

o In target faust: include WASM backend

o In target staticlib: include ASMIJS backend
o In target staticlib: include C backend

e In target staticlib: include CPP backend

e In target staticlib: include OCPP backend
o In target staticlib: include WASM backend
e In target staticlib: include LLVM backend
o In target wasmlib: include WASM backend
e In target asmjslib: include ASMJS backend

Note also that the command faust -—v prints the list of em-
bedded backends only e.g.:

FAUST : DSP to C, C++, FIR, Java,
JavaScript, old C++, Rust, asm.]s,
WebAssembly (wast/wasm) compiler,
Version 2.5.25 Copyright (C)

2002-2018, GRAME -Centre National de
Creation Musicale. All rights
reserved.

3.2. Building steps

The compilation process takes place in 2 phases:

e the project generation

e [the project compilation|

3.2.1. Project generation

This is the step where you choose what you want to include in your
project and to compile in a second step. The Faust compiler, the
OSC and HTTP libraries are included by default, but you can add
(or remove) the Faust libraries (static or dynamic versions). You
can also choose the form of your project : a Makefile, an Xcode or
Visual Studio project, or any of the generator provided by cmake
on your platform.

You may think of this step as the definition of the targets that
will be available from your project. Note that at this step, you also
choose the Faust backends that you want to include in the differ-
ent components (compiler and faust libraries). See the backends
subsection for more details.

3.2.2. The project form and location

Cmake provides support for a lot of development environments
depending on you platform. To know what environments are sup-
ported, type cmake —-help and you’ll get a list of the supported
generators at the end of the help message.

By default, the Make fi1e makes use of “Unix Makefiles” (or
“MSYS Makefiles” on Windows). Thus when you type make, it
generates a Makefile and then run a make command using this
Makefile. To avoid overwriting the existing makefile, the project is
generated in a subfolder named faustdir by default and created
on the fly.

You can freely change these default settings make and the
FAUSTDIR and GENERATOR options, that control the subfolder
name and the generator to use. For example:

$ make GENERATOR=Xcode
will generate an Xcode project in the faustdir subfolder
$ make FAUSTDIR=macos GENERATOR=Xcode

will generate an Xcode project in the macos subfolder
You can achieve similar results using direct cmake invocation

e.g.
$ mkdir macos

$ cd macos
S cmake .. -G Xcode

3.2.3. The project targets

By default, the generated project includes the Faust compiler and
the OSC and HTTPD static libraries, but not the Faust static or dy-
namic libraries. The makefile provides specific targets to include
these libraries in your project:

e make configstatic : add the libfaust static library to
your projects

e make configdynamic : add the libfaust dynamic li-
brary to your projects

e make configall : add the libfaust static and dynamic
libraries to your projects

e make reset : restore the default project settings.

Equivalent settings using direct cmake invocation. For ex-
ample and to add/remove the libfaust static library to/from your
project, you can run the following command from your faustdir:

IFC-3

backends

Proceedings of the 1° International Faust Conference (IFC-18), Mainz, Germany, July 17-18, 2018

set (ASMJS_BACKEND ASMJS CACHE STRING "Include ASMJS backend" FORCE)
set (CPP_BACKEND COMPILER STATIC DYNAMIC CACHE STRING "Include CPP backend" FORCE)
set (INTERP_BACKEND OFF CACHE STRING "Include INTERPRETER backend" FORCE)

Figure 1: Example of backend matrix configuration.

$ cmake -DINCLUDE_STATIC=[on/off] .. 3.3.2. Single targets that require a project configuration

You can have a look at the Makefile to see the correspondence e staticlib: to build libfaust library in static mode. Re-
between the make targets and the cmake equivalent call. Note that quires to call make configstatic first.
since cmake is a state machine, it’ll keep all the current settings e dynamiclib: to build libfaust library in dynamic mode.
(i.e. the values of the cmake variables) unless specified with new Requires to call make configdynamic first.
values. e oscdynamic: to build OSC library in dynamic mode. Re-

quires to call make configoscdynamic first.
e httpdynamic: to build HTTP library in dynamic mode.

3.2.4. Re-generate the project Requires to call make confighttpdynamic first.

The makefile includes a special target to re-generate your project.
It allows to change your backends, but can be also necessary to 3.3.3. Targets excluded from all
include new source files in your project (source files are scanned
at project generation and are not described explicitely). Simply

type:

e wasmlib: to build libfaust as a Web Assembly library.
e asmjslib: to build libfaust as an ASM JS library.

These targets require the .emcc compiler to be available from

make cmake [options
> fop : your path.

All the above options can be specified when running the cmake
target (apart the GENERATOR option that can’t be changed at 3.3.4. Platform specific targets

cmake level).

Equivalent call with cmake has the following form: e ioslib: to build libfaust library in static mode for iOS.

$ cd faustdir 3.3.5. Invoking targets from cmake
$ cmake .. [optional cmake options]
The general form to invoke a target using cmake commands is the
following:
3.2.5. Miscellaneous project configuration targets $ cmake —--build <project dir> [--target
target] [-—- native project options]
e make verbose : activates the printing of the exact com-
mand that is run at each make step The default cmake target is a11. For example the following
e make silent : reverts what make verbose did. command builds all the targets included in your project:
e make universal : [MacOSX only] creates universal $ cmake —-build faustdir

binaries
e make native: [MacOSX only] reverts native only bina-
ries (default state).

Cmake takes care of the generator you used and thus, pro-
vides an universal way to build your project from the command
line whether it’s Makefile based or IDE based (e.g. Xcode or Vi-
sual Studio)

3.3. Compiling using make or cmake The following sequence creates and build a project using Vi-
. sual Studio on Windows in release mode :
Once your project has been generated (see[Building steps), the de-
fault is to compile all the targets that are included in the project. $ cd your_build_folder
Thus, typing make will build the Faust compiler, the OSC static $ cmake -C ../backends/backends.cmake .. -G
library and the HTTP static library when these 3 components are "Visual Studio 14 2015 Win64"
included in your project. $ cmake --build . --config Release
For more details and options, you should refer to the cmake
3.3.1. Single targets always supported documentation.

Single targets are available use make or cmake. These targets 3.3.6. The install and uninstall targets

are:
Your project will always include an install target, which al-
e faust: to build the Faust compiler ways installs all the components included in the project.
e osc: to build the OSC library There is no uninstall target at cmake level (not supported
e http: to build the HTTP library by cmake). It is provided by the Makefile only and is based on the

IFC-4

http://kripken.github.io/emscripten-site/
https://cmake.org/documentation/
https://cmake.org/documentation/

Proceedings of the 1° International Faust Conference (IFC-18), Mainz, Germany, July 17-18, 2018

install_manifest.txt file that is generated by the install
target in faustdir.

Note that cmake ensures that all the targets of your project
are up-to-date before installing and thus may compile some or all
of the targets. It can be annoying if you invoke sudo make
install: the object files will then be property of the superuser
and you can then have errors during later compilation due to write
rights issues on object files. Thus it is recommended to make sure
that all your targets are up-to-date by running make before running
sudo make install.

4. CONCLUSIONS

We have presented Faust’s new building system based on CMake.
The retained approach preserves as much as possible the simplic-
ity of Makefiles with the flexibility and power of CMake. Above
all, it proposes a platform independent solution for compiling the
various Faust components. We hope that this new building system
will also facilitate the distribution of Faust on non Unix platforms,
in particular Windows.

5. ACKNOWLEDGMENTS
‘We would like to thank Albert Graf and Romain Michon for their

very useful comments and bug reports during the development of
this new building system.

6. USEFUL LINKS

Faust Wiki: https://github.com/grame-cncm/faust/wiki
CMake documentation: https://cmake.orqg

IFC-5

https://github.com/grame-cncm/faust/wiki
https://cmake.org

Proceedings of the 1° International Faust Conference (IFC-18), Mainz, Germany, July 17-18, 2018

A. VARIABLES REFERENCE

A.1. Variables that control the project generation

Name default comment
FAUSTDIR faustdir the project folder name
IOSDIR iosdir the project folder name used by the ioslib target only
CMAKEOPT | -DCMAKE_BUILD_TYPE=Release | the project build types
see CMAKE_BUILD_TYPE in cmake documentation
GENERATOR "Unix Makefiles" on Unix like systems
"MSYS Makefiles" on Windows
BACKENDS backends.cmake defines the embedded backends (see section

Table 1: Variables defined at make level only

Name default comment
UNIVERSAL off MacOSX only: control universal binaries generation
CMAKE_VERBOSE_MAKEFILE off Makefiles only: control make verbosity
INCLUDE_STATIC off Include libfaust static library
INCLUDE_DYNAMIC off Include libfaust dynamic library
INCLUDE_OSC on Include Faust OSC static library
INCLUDE_HTTP on Include Faust HTTPD library
OSCDYNAMIC off Include Faust OSC dynamic library
HTTPDYNAMIC off Include Faust HTTPD dynamic library
USE_LLVM_CONFIG on makes use of llvm-config to scan LLVM settings
when off, cmake try to use llvm-config.cmake (if any)
LLVM_CONFIG llvm-config | to use an alternate llvm-config name or path

Table 2: Variables defined at cmake level only.

A.2. Variables that control the project compilation

Name default comment
BUILDOPT | —config Release | compiles in release mode
depends on CMAKE_BUILD_TYPE (see CMAKEOPT above)
JOBS -j4 when using make
-jobs 4 with Xcode projects
/maxcpucount:4 | with MSVC projects

A.3. Variables that control the project installation

Name default comment
DESTDIR the install destination directory
PREFIX | /usr/local on Unix systems
C:\Program Files | on Windows
note that PREFIX is translated to CMAKE _INSTALL_PREFIX at cmake level

IFC-6

https://cmake.org/cmake/help/v3.0/variable/CMAKE_BUILD_TYPE.html

	1 Introduction
	2 Basic Faust Installation
	2.1 Compiling the compiler
	2.2 Compiling Alsa and JACK applications
	2.3 Compiling QT applications
	2.4 Compiling LADSPA, DSSI and LV2 plugins
	2.5 Compiling for SuperCollider
	2.6 Compiling for CSound
	2.7 Compiling for Pure Data
	2.8 Compiling a VST plugin for Linux

	3 Advanced Faust Installation
	3.1 Faust backends
	3.1.1 Selecting your backends
	3.1.2 Review compiled backends

	3.2 Building steps
	3.2.1 Project generation
	3.2.2 The project form and location
	3.2.3 The project targets
	3.2.4 Re-generate the project
	3.2.5 Miscellaneous project configuration targets

	3.3 Compiling using make or cmake
	3.3.1 Single targets always supported
	3.3.2 Single targets that require a project configuration
	3.3.3 Targets excluded from all
	3.3.4 Platform specific targets
	3.3.5 Invoking targets from cmake
	3.3.6 The install and uninstall targets

	4 Conclusions
	5 Acknowledgments
	6 Useful links
	A Variables reference
	A.1 Variables that control the project generation
	A.2 Variables that control the project compilation
	A.3 Variables that control the project installation

