Proceedings of the 1° International Faust Conference (IFC-18), Mainz, Germany, July 17-18, 2018

NOTES ON MULTITIMBRALITY AND TEMPERAMENT

Albert Grdf

IKM, Musicology, Computer Music Working Group
Johannes Gutenberg University (JGU) Mainz, Germany
aggraef@gmail.com

ABSTRACT

Grame has been offering support for creating polyphonic instru-
ments from (monophonic) Faust synthesizers for a while now. Un-
fortunately it lacks multitimbrality, i.e., the capability to maintain
separate control data for different MIDI channels. JGU has led the
way there, by providing proper multitimbrality in its LV2 and VST
architectures, as well as a few other interesting features. On the
other hand, Grame’s MIDI implementation also offers some sub-
stantial advantages which the JGU architectures lack. This article
discusses the most important special features of the JGU archi-
tectures, so that they may hopefully be incorporated into Grame’s
MIDI implementation in the future and thereby become available
to a wider range of Faust architectures.

1. INTRODUCTION

A classic application for dsp programming systems are polyphonic
synthesizers, i.e., dsp algorithms turning MIDI note and control
data into audio signals. This is typically implemented by taking
monophonic sound generators and running them in parallel. To
make this work, a voice allocation algorithm has to be provided
which manages a pool of dsp instances (called voices). This algo-
rithm allocates dsp instances for simultaneously sounding MIDI
notes (usually in a round-robin fashion) and deals with a bounded
number of voices by employing voice stealing (i.e., dropping a
note, typically the longest-playing one) if the number of notes to
be played would exceed the number of available dsp instances.

Of course, these issues have all been well understood at least
since the dawn of digital synthesizer technology in the 1970s. As
far as Faust is concerned, at JGU we’ve been leading the way there
by adding fairly comprehensive MIDI and polyphony support to
our architectures around 2012 [1]. Grame recently followed suit
by extending the Faust core with their own MIDI and polyphony
support [2].

It should be noted that these facilities have always been op-
tional. Even if they are not available directly in the Faust architec-
ture that you use, you should be able to implement voice allocation
in a suitable host environment such as Pd and Max instead. This is
much less convenient, though, thus providing good MIDI support
in Faust itself is an important feature.

The Grame and JGU MIDI implementations each have their
own strengths and weaknesses. One big advantage of the Grame
implementation is that it is available in Faust’s core and can easily
be added to any architecture, by simply including the correspond-
ing header files and running a few initializations in the architec-
ture code (details can be found on the Faust website). This makes
adding MIDI support to existing architectures a walk in the park.
Other major advantages of the Grame implementation are sample-
accurate timing of control events on input, MIDI sync, support for
all types of MIDI messages (including channel and key pressure

IFC-1

a.k.a. “aftertouch”) and more comprehensive MIDI output for all
message types. (Most of these features are on the road-map for the
JGU architectures as well, but have not been implemented yet.)

On the other hand, one major shortcoming of the Grame im-
plementation is its lack of proper multitimbrality, i.e., the capabil-
ity to maintain separate control data for different MIDI channels.'
Consequently, a synthesizer created with Grame’s facilities will
not handle multi-channel MIDI data as one might expect. E.g.,
when processing a volume change (cc 7) on MIDI channel 3, say,
the volume of all voices will be changed, no matter what their
MIDI channels are. This may be adequate for simple real-time
MIDI input, but is at odds with the MIDI standard which says that
“Control Change messages, like other MIDI Channel messages,
should only affect the Channel number indicated in the status byte”
[3, p. 5]. And it causes trouble with sequenced MIDI data, the kind
you find in most type 1 standard MIDI files, i.e., virtually every
MIDI file you can download from the web.

In order to properly implement multitimbrality, the JGU im-
plementation is necessarily more complicated, which may be the
reason why Grame chose not to adopt it. But it is not all that dif-
ficult to understand either. Therefore in this article we make an
attempt to clarify how it works, so that we may hopefully inte-
grate it into Grame’s polyphony implementation in the future and
thereby make it available to a wider range of Faust architectures.
While we’re at it, we also briefly review another important feature
offered by the JGU architectures which the Grame implementa-
tion lacks right now, namely support for the MIDI tuning standard
(MTS). For applications dealing with micro-tonality and historic
temperaments, this is a rather essential capability, so it would be
good to have this in the Faust core as well.

2. POLYPHONY IN FAUST

To be able to be used as an instrument, a Faust dsp must follow
a few simple conventions.”> First, it must provide three special
so-called voice controls named “freq”, “gain” and “gate”, which
denote a note’s frequency, amplification and on-off signal, and are
in 1-1 correspondence with the parameters of a MIDI note (note
number, velocity and on/off status). Secondly, the architecture

must be informed that it’s supposed to go through the necessary

!"The term “multitimbral” is often used somewhat loosely to denote any
MIDI synthesizer “capable of producing two or more different instrument
sounds simultaneously” [3, p. 10]. However, such an instrument will nor-
mally have to provide separate control data for different MIDI channels,
in all but the most minimalist implementations. Therefore (and for want
of a better catchphrase), we use “multitimbral” as a moniker for this more
specific capability throughout the paper.

2This design is nothing to write home about, it was born out of prac-
tical requirements when we first designed an interface for Faust-based in-
struments in Pd-Faust [4] and the JGU architectures [1], and somehow it
stuck. Please check [5, Section 9] for the technical details.

mailto:aggraef@gmail.com
http://faust.grame.fr/news/2016/01/14/controlling-with-midi.html

Proceedings of the 1° International Faust Conference (IFC-18), Mainz, Germany, July 17-18, 2018

incantations to turn the dsp into an instrument. Most architectures
which support this will nowadays understand the nvoices decla-
ration which tells it the number of voices that should be available.
If the value of nvoices is zero, or the nvoices declaration is
absent then the program is to be taken as is, i.e., it will be treated
as an ordinary audio effect.

For instance, here is how we’d employ these conventions to
turn a simple sine generator into an instrument with sixteen voices
and ADSR envelop.

declare nvoices "16";
import ("stdfaust.lib");

freq = hslider ("freq", 440, 0, 10000, 0.01);

gain = hslider("gain", 0.3, 0, 1, 0.01);

gate = button("gate");

vol = hslider ("vol [midi:ctrl 7]", 0.2, O, 1,
0.01) si.smooth(0.99);

process = os.osc(freq) *

en.adsr(0.01,0.1,gain, 0.1, gate) xvol;

Note the voice (freq, gain and gate) controls; the latter
two are used as the sustain level and the trigger signal of the en-
velop, respectively. To illustrate the use of MIDI controllers, we
also added a “master volume” control which applies to all sound-
ing voices. The meta-data [midi:ctrl 7] assigns that control
to the customary MIDI controller #7.

The one big advantage of the approach sketched out above is
its simplicity. The developer designing an instrument only has to
worry about generating the sound of a single note. The necessary
infrastructure to turn the monophonic dsp into a polyphonic instru-
ment will then be provided by the architecture. However, there are
situations in which this simple method falls short. E.g., an instru-
ment requiring tight interactions between the different voices (such
as a physical modeling synth which simulates sympathetic reso-
nances between strings) will most likely require a more elaborate
implementation than what the available polyphonic architectures
currently provide.

3. MULTITIMBRALITY

In order to properly handle multi-channel MIDI data, the compiled
Faust dsp has to allocate and maintain storage for control variables
not only per voice (that’s what code generated by the Faust com-
piler does anyway), but also per MIDI channel. On a conceptual
level, this requires the collection of data structures depicted in the
schematic diagram on the right (Fig. 1).

Let us take the instrument from the previous section as an ex-
ample. When a MIDI controller event such as cc 7 127 (which sets
the master volume control to its maximum value) arrives on MIDI
channel 1, say, the new control value (1 in this case) will first have
to be recorded in the parameter block for that MIDI channel. Then
the architecture has to consult the voice allocation table in order
to determine all voices which are currently active playing notes
from MIDI channel 1, and update the value in the corresponding
parameter blocks accordingly (this can be made efficient by im-
plementing the voice allocation table as some kind of bidirectional
multi-map). Subsequently, when a new voice is allocated for a
MIDI note event on MIDI channel 1, the data from the parame-
ter block for MIDI channel 1 will be copied over to initialize the
newly allocated voice with the proper control values.

IFC-2

voice allocation

- MIDI channel #1
voice #1
- » 1-3 control data
control data
MIDI channel #2
A PR » o1 control data
control data
MIDI channel #3
. . control data
voice #8)
control data - > 80 MIDI channel #16
control data

Figure 1: Multi-channel control data.

In principle, MIDI output for passive Faust controls can be
treated in the same fashion, by reversing the flow of control data
so that it goes from the voices to the MIDI channel data, but this
has not been implemented in the JGU architectures yet. There’s
also one complication which arises for MIDI output only, namely
how control data from different voices on the same MIDI chan-
nel should be aggregated. Sum, average, median, minimum and
maximum are some obvious choices there, but that’s up to the ap-
plication, so we’d probably want to make it configurable using per-
control meta-data.

Other MIDI data, such as pitch bend and aftertouch, will have
to be handled in an analogous fashion. Same goes for the tuning
tables which are needed to map MIDI note numbers to frequencies.
These aren’t implemented in the Grame architectures which uses
the standard 12-tone equal temperament, but the JGU architectures
have them. We will discuss these in the following section.

While the basic design for multitimbrality is rather straight-
forward, it must be noted that the details of the data structures
sketched out above may become rather intricate if they are to be
implemented efficiently. For details, we refer the reader to the
source code of the faust-1v2 architecture, which is included in the
Faust distribution and also available as a separate project.’

4. MTS SUPPORT

The MIDI Tuning Standard a.k.a. MTS is an addendum to the
MIDI Standard 1.0 which provides for customizable tuning tables
in a manufacturer-independent way [6]. While the author is not
aware of any implementation of the MTS in hardware (Roland and
Yamaha each have their own implementations, which are very sim-
ilar to the octave-based tunings in MTS, though), there have been
a few realizations in software, most notably in Fluidsynth [7].
Like Fluidsynth, the JGU architectures implement the octave-
based tunings of the MTS. These basically consist of a tuning table
(12 tuning offsets in Cent* relative to 12-tone equal temperament)
in the form of a sysex message. There are in fact four different
variations of these, depending on the range and resolution of the
Cent values and real-time processing options; we refer the reader
to the standards document or the faust-lv2 README file for all
the gory details. One aspect that is important in the light of our

3https://bitbucket.org/agraef/faust—1v2
41 Cent = 1/100 of an equal-tempered semitone = 1/1200 of an octave

http://www.fluidsynth.org/
https://bitbucket.org/agraef/faust-lv2

Proceedings of the 1° International Faust Conference (IFC-18), Mainz, Germany, July 17-18, 2018

preceding discussion of multitimbrality is that each MIDI channel
can have its own tuning table. We also mention in passing that the
author has written a little Pure script named sclsyx which makes it
easy to create MTS tuning tables from Manuel Op de Coul’s Scala
format.’

The JGU implementation defaults to the usual 12-tone equal
temperament, which corresponds to an MTS tuning with all Cent
offsets equal to zero.

In the general case, the frequency fn of a MIDI note n
12k + ¢ at position ¢ in the kth MIDI octave (i = 0 2 C, 1
Cf,...,10 = Bb, 11 = B) will be calculated from the offset ¢; in
Cents stored in the tuning table and the frequency f,, of the note
in equal temperament as follows:

> 1l

fn _ fn % 2ci/1200

For instance, the 1-byte tuning offsets for a quarter comma
meantone temperament rooted at standard pitch A would be as fol-
lows, with the hexadecimal contents of the MTS message format
shown below the human-readable form (note that in this format a
zero Cent offset is encoded as hexadecimal 40).

[CICIi|D]IEN]| E[F[Fi[G[GI[A[B] B

10 | -14 3120 4| 13| -11 7| -17 0| 17| -7

4A | 32 |43 | 54 | 3C | 4D | 35 |47 | 2F | 40 | 51 | 39

Thus, C4 would be at 440 x 27912 x 2Y/120 ~ 263.14 Hz
in this tuning (whereas it is at about 261.63 Hz in equal tempera-
ment). Likewise, E4 is at about 328.87 Hz, as the reader can easily
verify, yielding a major third of 5/4 (up to rounding errors).5

The JGU architectures update the tuning tables in real-time
when an MTS sysex message is received. In addition, an extra
tuning control is provided that allows easier automation in DAW
environments, which sometimes make it inconvenient to directly
inject sysex messages into a MIDI track. (For this tuning control a
folder with the MTS tunings must be prepared beforehand, please
see the faust-lv2 README for details.)

5. CONCLUSION

Grame’s MIDI implementation, as described in [2], is very com-
prehensive and is certainly the recommended way to implement
any new architectures requiring MIDI support in the future. The

5See https://bitbucket.org/agraef/sclsyx for the
sclsyx script and http://www.huygens-fokker.org/scala/
for information on the Scala program. A comprehensive archive
of musical scales of all kinds and origins can be downloaded at
http://www.huygens—fokker.org/docs/scales.zip.

This shouldn’t come as a big surprise to anyone who knows the theory,
because the net offset of the zeroth and fourth scale positions in the above
table amounts to 14 Cents, which matches the accumulated offset if you
follow the first four fifths in the circle of fifths (3 +4 + 3 + 4 = 14).
Add to that a third of a Pythagorean comma of about 8 Cent and you get
the size of the syntonic comma of about 22 Cent. (The numbers look a
bit out of whack because we’ve rounded to integral Cent values. It goes
without saying that a 2-byte encoding of the tuning would give much better
accuracy.)

Reducing each perfect fifth by a quarter of the syntonic comma is in fact
how Zarlino constructed quarter comma meantone in 1571 [8] and is also
what gives the tuning its name. Note that we describe this here in modern-
day terminology using A. J. Ellis’ Cent scale, because that’s what MTS
uses. The Cent scale of course wasn’t known at Zarlino’s time (logarithms
hadn’t really been invented yet).

IFC-3

JGU architectures, having been there first, do not offer quite the
same feature set, and are tied to the LV2 and VST environments.
But they do have some compelling advantages when it comes to
multi-channel support and MIDI tuning capabilities. There are a
few other minor bits and pieces supported in these architectures
which we didn’t mention in this paper, such as all notes/sounds
off, pitch bend range and master tuning messages. These are uti-
lized by some DAW, MIDI player and tuning software, so it seems
appropriate to have them supported in a comprehensive MIDI syn-
thesizer implementation as well.

It remains to be seen how easily the extra JGU features can be
incorporated into Grame’s MIDI support, but it certainly seems to
be doable and a worthwhile endeavor. This would instantly make
those extra features available in all Faust architectures that have
already been ported to the Grame MIDI and polyphony machinery,
and it would also allow the faust-1v2 and faust-vst architectures to
be ported over and take advantage of that infrastructure.

One area that still needs to be tackled in Faust’s MIDI support
is dynamic voice allocation. Right now all MIDI-enabled architec-
tures require a fixed upper bound on the number of voices. While
the upper bound can be chosen generously large to mitigate this
restriction, it makes sense to just get rid of it, at least as an option.
Of course, this must be implemented carefully in a real-time en-
vironment, but other dsp languages like SuperCollider and ChucK
have been offering this for a long time, so there is no reason why
the Faust project should not be able to follow suit.

6. REFERENCES
[1] Albert Grif, “Creating LV2 plugins with Faust,” in Proceed-
ings of the 11th International Linux Audio Conference, IEM,
Graz, 2013, pp. 145-152, IEM.

Stéphane Letz, Yann Orlarey, Dominique Fober, and Romain
Michon, “Polyphony, sample-accurate control and MIDI sup-
port for FAUST DSP using combinable architecture files,” in
Proceedings of the 15th International Linux Audio Confer-
ence, Jean Monnet University, St. Etienne, France, 2017, pp.
69-76, IMU.

The MIDI Manufacturers Association, Los Angeles, CA, The
Complete MIDI 1.0 Detailed Specification (3rd ed.), 2014, on-
line at www.midi.org/specifications.

(2]

(3]

[4] Albert Grif, “Pd-Faust: An integrated environment for run-
ning Faust objects in Pd,” in Proceedings of the 10th Interna-
tional Linux Audio Conference, Stanford University, Califor-

nia, US, 2012, pp. 101-109, CCRMA.

GRAME, Centre National de Création Musicale, Lyon,
FAUST Quick Reference, 2017.

MMA, Los Angeles, CA, MIDI Tuning Messages, 1999, on-
line at www.midi.org/specifications.

(5]
(6]

[7] David Henningsson, “FluidSynth real-time and thread safety
challenges,” in Proceedings of the 9th International Linux
Audio Conference, Maynooth University, Ireland, 2011, pp.

123-128, NUI Department of Music.

Gioseffo Zarlino, Theorie Des Tonsystems : Das 1. Und 2.
Buch Der Istitutioni Harmoniche (1573) / Gioseffo Zarlino.
Aus d. Ital. Ubers., Mit Anm., Kommentaren u.e. Nachw. Vers.
von Michael Fend, Lang, Frankfurt am Main, 1989.

(8]

https://bitbucket.org/agraef/sclsyx
http://www.huygens-fokker.org/scala/
http://www.huygens-fokker.org/docs/scales.zip
https://www.midi.org/specifications/item/the-midi-1-0-specification
https://www.midi.org/specifications/item/the-midi-1-0-specification

	1 Introduction
	2 Polyphony in Faust
	3 Multitimbrality
	4 MTS Support
	5 Conclusion
	6 References

