
Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

WEATHER ORGAN: A SPARSE STOCHASTIC SYNTHESIZER IN FAUST

Mykle Hansen

MSL
Portland, Oregon, USA
mykle@mykle.com

ABSTRACT

Weather Organ is a Faust instrument for manipulating sparse noise
to synthesize non-tonal soundscapes, with a focus on reproducing
certain stochastic natural sound sources. Its structure, algorithms,
and various interesting uses are described.

1. INTRODUCTION

This paper describes Weather Organ, a Faust instrument for ma-
nipulating sparse noise to imitate slowly-changing natural sound
sources such as rain, wind, surf, fire, Geiger counters and vol-
canic activity, and to create interesting new textures of sound. It
is the product of various discoveries made while using Faust to
explore the definition, synthesis and experience of acoustic noise
while, simultaneously using the exploration of noise as as focus
for learning Faust.

The use of synthetic noise to simulate noisy natural sounds is
one of the oldest tools in sound design. In the 1920s, sound ef-
fects pioneers Ora and Arthur Nichols constructed a machine that
used the hiss of pressurized air to create the sound of ocean waves,
gunshots and birdsong to accompany silent films; later, at CBS
Radio’s first-ever sound effects department, they used the white
noise produced by a modified air conditioner to imitate the sound
of a jet engine for Orson Welles’ 1939 Mercury Theater broadcast
of "War Of The Worlds"[1]. In 1961, Harald Bode[2] described
noise generators as one of the fundamental components of mu-
sic synthesis, and the filtration of noise as one of the fundamental
strategies for producing un-pitched synthetic tones in the percus-
sion units of early home organs. In 1965, J. Pierce [3] described
how Bell Labs researchers were already exploring the use of noise
on a slower time-scale, using pseudorandom numbers to organize
the pitches and durations of notes in computer-generated musical
compositions along lines first proposed by Iannis Xenakis in [4] .

Modern digital synthesis gives this approach the utmost preci-
sion; Farnell [5] gives detailed analyses of the physical processes
that produce the sounds of fire, rain, running water, and surf (among
many others) and describes PureData recipes to simulate those
sounds, making heavy use of pseudorandom noise at various time
resolutions. Weather Organ is not the product of a depth of knowl-
edge or research comparable to Farnell’s work; the design process
was an impressionistic effort to bend an evolving noise experiment
toward natural sounds. Nevertheless, it interestingly demonstrates
that the human ear does not require such complete detail in order
to recognize such sounds. In the same way that low-fidelity audio
recordings can provide a convincing illusion of musicians present
in the room, it may be that for natural sound sources caused by
many small impulses, the character of time distribution of those
impulses is the fingerprint by which they are recognized.

When the density of noise is increased to the point that in-
dividual clicks aren’t audible to the ear, Weather Organ follows

a long tradition of the use of constant noise to synthesize sounds
of heavy wind, rain or surf. The use of sparse noise to generate
sparse environmental sounds, such as a light rain or a mild breeze,
is less common, but quite powerful. Sparse noise manipulation of-
fers an algorithmically simpler and computationally less expensive
tool than Iannis Xenakis’ dynamic stochastic synthesis process or
modern digital granular synthesis; it replaces complex waveform
manipulation and sample processing with simple statistical ma-
nipulations and the rolling of dice. But it still offers an expensive
means to explore Xenakis’ concepts of sonic granularity, partic-
ularly the perceptual threshold between discrete and continuous
sound.

Throughout this paper I will mention various ways in which
features of the instrument can evoke natural acoustic phenomena.
These are purely subjective associations, no more scientific than
a wine review, but I hope they are inspiring to those who might
choose to explore the instrument.

In any case, Weather Organ demonstrates some models for us-
ing sparse noise to synthesize stochastic sounds which may be suf-
ficiently convincing for some uses, while being less complex, and
likely less compute-intensive, than the more sophisticated models
of [4] and [5]. It also allows for the freeform exploration of other
interesting textures of stochastic sound which have no natural ana-
log known to this author at this time.

2. OVERVIEW

Figure 1 shows a simplified flow diagram of the components of
Weather Organ: a noise generator is fed to a filter bank, while
various sources of randomness with different time resolutions and
distributions (flutter and drift) are used to modulate the parameters
of the generator and the filters. A final output section provides gain
control.

3. NOISE GENERATION

Weather Engine’s noise generator emits samples of noise, either
generated internally in white or brown spectral colors, or taken
from an external source, at a sparseness from 0.1Hz to the sam-
ple rate, with periodicity continuously variable from predictable
to random, and with width from 1 sample to the period of sparse-
ness. The result can be enhanced with grit. All of these italic terms
are defined below. In these descriptions, a +1 impulse emitted by
a trigger function is called a trigger event, while a short-duration
noise generated by multiplying such a trigger event with a noise
signal is called a noise event.

IFC-1

http://mykle.com/msl
mailto:mykle@mykle.com

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

Figure 1: Top-level organization of Weather Organ.

3.1. Noise

The definition of noise is fascinatingly complex and surprisingly
subjective across all the domains where the word is used. Rather
than unpack all that, I use the word generally in this paper to
mean unpitched sounds, but specifically in this section to mean
digital pure white noise, a stream of randomly distributed floating-
point values with a running average approaching zero, with flat fre-
quency spectrum (except when noted as brown) and flat amplitude
distribution (except when noted as Gaussian). multinoise from
Faust’s noises.lib is the main random generator and ultimate
source of all noise in Weather Organ. Because it uses multiple
streams of random values in various ways simultaneously, the de-
correlation of multiple random streams provided by multinoise
is audibly important for achieving a wider range of sounds.

3.2. Sparseness

Sparseness is the inverse of Density, when Density refers to the
mean density of noise events produced by the noise generator;
sparse noise is noise in which that density is relatively low. Weather
Organ uses the same types of sparse noise as produced by the
sparse_noise function of noises.lib: a constant stream
of zeroes interrupted at random intervals by single samples of ran-
dom value, i.e. single-sample noise events. The mean density of
noise events, f0, measured in average-events-per-second, is the
only argument taken by sparse_noise. The algorithm used by
that function guarantees that one noise event will occur at some
moment during every time interval of f0.

Weather Organ’s noise generator is similar to
sparse_noise, but with three enhancements.

• The triggering algorithm for sparse noise generation is in a
seperate function, sparse_periodic_trigger, which
emits +1 impulses. This function’s output signal is com-
bined with one of several noise sources to produce different
flavors of sparse noise.

• The random number source used by
sparse_periodic_trigger to randomize generated

events is taken as an argument, so that multiple instances
may be de-correlated.

• The third enhancement, periodicity, is described below.

3.3. Periodicity

sparse_periodic_trigger also takes a coefficient of peri-
odicity argument (c), a value between 0 and 1 which affects the
distribution of random events. When set to 0, the position of the
event within the f0 period is entirely random, and the event distri-
bution is the same as of sparse_noise. When set to 1, events
are emitted exactly at the start of each period. Values between 0
and 1 produce intermediate degrees of periodicity. This is useful
for imitating semi-rhythmic noise sources such as boiling water or
dripping taps.

3.4. Color

Weather Organ generates sparse periodic white noise as described
above, by multiplying a Gaussian noise stream with a stream of
events from sparse_periodic_trigger. To produce sparse
periodic brown noise, sparse_periodic_trigger is used
with Faust’s sAndH to sample and hold a noise signal. The re-
sult is a wave that changes instantaneously from one random value
to another at each noise event. Between events, the wave holds
a constant DC offset. In Figure 2, FFT analysis in Gnu Octave
shows that the while the harmonic spectrum of non-zero impulses
is white (in the common sense of being flat across the frequency
range from sub-audible to Nyquist), the spectrum of each shift be-
tween DC offsets over the timeframe of a single sample is brown,
i.e. it contains a 1/f2 distribution of frequencies across the audi-
ble spectrum. This is not a characteristic of the noise input signal;
the individual input samples, surrounded by silence, have no spec-
tral tilt of their own. It is the return to zero after an impulse that
causes the impulse to be white, or the absence of a return to zero
that causes it to be brown. However, as the mean event density
f0 rises, and the gaps between noise events get smaller, the out-
put takes on more of the spectrum of the input. Therefore brown
noise input would be ideal to produce a brown-tinted output across
all values of f0. However, for various reasons1, Weather Organ
uses the pink_noise function of noises.lib here instead of
a proper brown noise generator.

3.5. External Noise Source

As a third option, Weather Organ can take any input signal and
convert it to sparse periodic brown noise, by running it through the

1Mainly: While first developing Weather Organ I mis-identified the
spectrum of sampled & held noise as 1/f (pink) instead of 1/f2 (brown);
thankfully, an astute reviewer caught this error in an earlier draft of this
paper. While revising the paper I experimented with using brown noise
here, generated with Faust’s spectral_tilt function, to better match
the spectrum of sparse periodic brown noise. But after some listening in
which I applied drift to the density of brown noise, I found that the result-
ing all-brown sound, although closer to what I had intended, did not sound
as interesting as what I had mistakenly produced by sampling & holding
pink noise. In the accidental implementation, as the density of brown noise
increases, the spectrum undergoes a gradual shift from brown to pink. To
my ear this seems to evoke a phenomenon of the sound of waves breaking
on a shoreline, in which the higher frequencies are reduced when the wave
is farther away, but become brighter as the water gets closer. This suggests
that flux-animated spectral tilt would be an interesting feature; I hope to
explore that soon.

IFC-2

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

102 103 104
-70

-60

-50

-40

-30

-20

-10

Frequency (20-20000 Hz)

Po
w

er
 (d

B)

FFT of sparse white noise

102 103 104
-70

-60

-50

-40

-30

-20

-10

Frequency (20-20000 Hz)

Po
w

er
 (d

B)

FFT of sparse brown noise

Figure 2: Harmonic analyses of ten seconds of sparse noise.
The upper graph was produced with sparse_noise() from
noises.lib. The lower graph was generated with the sparse peri-
odic brown noise algorithm with zero periodicity. The mean event
frequency f0 was 10Hz in both cases.

same sample and hold signal pathway described above for brown
noise. As the gate width and event frequency are adjusted, this
feature can give the input signal some of the sonic characteristics
of an imperfectly-tuned radio.

Interesting physical interactions with Weather Organ can be
had when it is configured in a feedback loop between a microphone
and a loudspeaker. Below a certain noise density, the sparseness
of the passed signal prevents out-of-control feedback, yet room
acoustics, speaker placement and other audible site phenomena
still produce a recognizable coloration. If a handheld microphone
is used, certain settings of Weather Organ can produce not only
the sound of a Geiger counter but also the physical experience of
using a handheld instrument to seek out concentrations of invisible
energy in a three dimensional space. (This technique works best in
an enclosed space; in effect, Weather Organ is used to inspect the
modes of a room coupled with an audio system.)

3.6. Width

The noise generator also takes a width parameter in seconds, to
increase the number of noise samples in each noise event from a
minimum of 1 sample. This is accomplished by applying
sAndH with a countdown timer to the output of
sparse_periodic_trigger, then using the resulting signal
to control either the white or brown algorithm described above.
The resulting bursts of sparse noise, though still too brief to be
perceived as continuous, contain an audible texture that can evoke
the momentarily-complex sound of a raindrop striking a puddle.

3.7. Grit

The output of the noise generator is normalized internally between
the values of +1 and -1. It can be driven louder, without exceeding
those bounds, by pushing all output samples closer to the bounds
of that interval. This is done by multiplying the sign of each sam-
ple with the absolute value of that value raised to an exponent be-

tween 0 and 1. An exponent of 1 does nothing; an exponent of 0
drives each sample to either +1 or -1. Fractional exponents have an
intermediate effect. The grit parameter is that exponent. Its effect
is similar to that of an audio compressor.

noiseIn abs

grittiness

pow

sign(x132)

*

grit(1,vslide..., 0.01f) : -)(x132)

Figure 3: Grit algorithm.

4. FILTERS

Weather Organ feeds noise events through a bank of three synchro-
nized filters. This is only one of many possible ways to add timbre
to noise events; other approaches will be explored in the future.
Faust’s va.moog_vcf lowpass-filter model (described by Stil-
son and Smith in [6]), while CPU-expensive compared to the rest
of Noise Organ, is straightforward to use and, at higher Q values,
exhibits a not-unpleasant ringing tone analogous to the sound of a
resonant object struck by a momentary force.

4.1. Fundamental Filter

The fundamental filter has an adjustable Q and cutoff frequency.
The fundamental cutoff can be changed by MIDI or OSC note
messages; combined with sufficiently high values of Q, this al-
lows Weather Organ to be played as a polyphonic tuned musical
instrument.

4.2. Overtone Filters

The two overtone filters share a base Q value with the fundamen-
tal filter. Their cutoff frequencies are adjustable multiples of the
fundamental cutoff. As the fundamental Q and cutoff change, ei-
ther by direct manipulation or through its Flutter and Drift con-
trols (described below), the overtone filters change in sync. In this
way, the three filters can give each noise event a complex harmonic
signature that remains constant as the fundamental filter’s cutoff
changes. Each overtone filter also has its own Flutter and Drift
controls (described below), that can fluctuate independently of the
fundamental if desired. This can create liquid gurgling tones, or
the sound of tumbling shards of brittle resonant materials such as
glass or earthenware.

5. FLUX SOURCES

Weather Organ uses two sources of flux, flutter and drift, to pro-
duce random adjustments to most of its parameters. Most param-
eters have individual flutter and drift controls, allowing the degree

IFC-3

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

of flux to be adjusted for each parameter. The fluctuations are ap-
plied, either through addition to or exponentiation as appropriate,
of the base value of the parameter in question.

5.1. Flutter

Flutter is a straightforward random coefficient that is synchronized
with the noise engine; a parameter with flutter applied will change,
discontinuously, by a random degree within an adjustable range, in
sync with each noise event produced by the noise engine. Flutter
is held constant between noise events, because any discontinuous
changes during those periods would inject extra noise in the output
signal.

Although all flutter changes are correlated in time, they are
uncorrelated in value. Each parameter’s flutter is calculated us-
ing randomness from an independent, uncorrelated Gaussian noise
stream.

5.2. Drift

Drift is a slow-changing, continuous variation applied to a parame-
ter, intended to imitate the fluctuations in slow-shifting noise phe-
nomena such as wind or surf. To accomplish this, a drift wave
is created by applying a constant-slope attack-release envelope to
a very-low-frequency sparse brown noise signal, using the same
sparse brown noise algorithm described in section 3.2 above (i.e.
having a random constant DC offset that changes discontinuously
and randomly) at a mean event density between 0.1 seconds and
ten minutes. The envelope’s attack and release slopes are made
proportional to that density, such that they would have just enough
time to open and close on a constant +1/-1 square wave of the
same frequency as the density. When these envelopes are applied
to the sparse brown noise signal, the resulting drift wave alternates
between motion and stillness. Applying this value as an offset to
the sparseness of the noise generator, and/or the Q with of the fil-
ter bank, can produces a recognizable simulation of the random
turbulence in wind.

In contrast with flutter, all the drift-enabled parameters of
Weather Organ share a single drift wave. This allows, for instance,
the same drift effect to be applied to both noise density and filter
Q, increasing the verisimilitude of the synthetic wind. For addi-
tional flexibility, all drift knobs allow either a positive or negative
offset, so that some parameters may be driven low as others are
driven high.

6. CONTROLS

Figure 4 shows the Weather Organ user interface, implemented
with Faust’s UI primitives. It is divided into four sections: Weather,
Noise, Filter and Output.

6.1. Weather

The Weather section contains two parameters which together af-
fect all flutter and drift settings in the system. It also meters the
realtime activity of the flutter and drift generators at current set-
tings.

Flux is a percentage between 0 and 200, by which all flutter
sources and the main drift wave are multiplied. This one slider
can reduce or increase all flutter and drift in the instrument in one
place. Impressionistically speaking, it adjusts a coefficient of anx-
iety, from calm to panic.

Turbulence controls the average frequency of the drift wave,
which in turn controls the rate with which drift settings change. It
is named for the effect it has on Weather Organ’s simulations of
wind.

6.2. Noise

The Noise section controls the noise generator. A musician or me-
teorologist may choose the noise source, adjust the sparse noise
density, width and rhythm, and apply grit to the result. Density
can have drift. Width can have both drift and flutter.

6.3. Filter

The Filter section contains controls for the frequency and Q of the
fundamental filter, the overtone ratio and levels of the two overtone
filters, and drift and flutter controls. The drift and flutter controls of
the overtone filters adjust two parameters: the overtone ratio, and
overtone Q relative to the fundamental Q. There is also a simple
low shelf filter in this section, useful for softening the impact of
sparse brown noise on subwoofers.

6.4. Output

The output section provides a global gate and gain control, and an
optional limiter (specifically, limiter_1176_R4_mono from
compressors.lib), a comforting feature for owners of fragile
loudspeakers.

7. CONCLUSIONS

I wandered into this project while researching an article about the
modern uses of acoustic noise. Today, high-fidelity recordings of
noise, both natural and synthetic, are a quantifiable commodity
of growing popularity, available for download or on DVD from a
variety of sources. Many people find that certain kinds of constant
acoustic noise help them to sleep, to concentrate, or to escape more
unpleasant sounds. However, there appears to be no single form of
noise that works to everyone’s benefit. It’s my hope that Weather
Organ might become a tool to help individual noise-users find the
specific noise that comforts them.

Weather Organ is still evolving. The source code for this and
future versions of Weather Organ is available online at https://
github.com/myklemykle/weather_organ, for free use
and modification under a Creative Commons license.

8. ACKNOWLEDGMENTS

Many thanks to the members of the faudiostream-users and
faudiostream-devel mailing lists, who have been most gracious
with their time and advice while I’ve been learning and using Faust.
Thanks also to the early reviewers of this paper.

9. REFERENCES

[1] Robert L Mott, Radio Sound Effects: Who Did It, and How, in
the Era of Live Broadcasting, McFarland, 2008.

[2] Harald Bode, “Sound synthesizer creates new musical ef-
fects,” Electronics, 1961.

IFC-4

https://github.com/myklemykle/weather_organ
https://github.com/myklemykle/weather_organ

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

[3] John Pierce, “Portrait of the computer as a young artist,” Play-
boy, 1965.

[4] Iannis Xenakis, Musiques formelles, Richard-Masse, 1963.

[5] Andy Farnell, Designing sound, MIT Press, 2010.

[6] Tim Stilson and Julius O. Smith, “Analyzing the Moog VCF
with considerations for digital implementation,” 1996.

IFC-5

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

Figure 4: The controls of Weather Organ.

IFC-6

	1 Introduction
	2 Overview
	3 Noise Generation
	3.1 Noise
	3.2 Sparseness
	3.3 Periodicity
	3.4 Color
	3.5 External Noise Source
	3.6 Width
	3.7 Grit

	4 Filters
	4.1 Fundamental Filter
	4.2 Overtone Filters

	5 Flux Sources
	5.1 Flutter
	5.2 Drift

	6 Controls
	6.1 Weather
	6.2 Noise
	6.3 Filter
	6.4 Output

	7 Conclusions
	8 Acknowledgments
	9 References

