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ABSTRACT

Optimal Ambisonic reproduction requires two different filter types,
one to implement dual-band decoding and a second to compensate
for the near-field effect of having the loudspeakers close to the lis-
tener. We present the theory, design, and implementation of both
types of filters. They comprise key components of a full Ambisonic
decoder engine written completely in FAUST. The FAUST digital
signal processing specification language was selected for the im-
plementation so the filters may be easily incorporated into many
different plugins and decoder engines.

1. INTRODUCTION

Ambisonics is a full-sphere, surround sound technique. One of its
main advantages is that its transmission format is a loudspeaker-
array-independent representation of the soundfield, which is then
decoded for reproduction over a particular array. The Ambisonic
Decoder Toolbox (ADT) is a MATLAB/Octave toolbox written by
the present authors that computes decoder configurations given the
geometry of the loudspeaker array and the set of transmission chan-
nels in use [1, 2, 3]. It implements three major design techniques,
each with a number of variants, including techniques well suited
for “difficult” configurations such as domes and stacked rings of
loudspeakers.

Initial versions of the toolbox produced configuration files for
existing decoder plugins that performed the signal processing. This
limited its application to the audio processing platforms, decoder
features, ambisonic orders, and numbers of loudspeakers supported
by those engines. In order to get around this limitation, we imple-
mented a new, full-featured decoder. We decided to implement
it entirely in FAUST, because it could then be used with any au-
dio processing platform that is supported by FAUST. In practice,
most users compile the decoders to VST, MaxMSP, Pd, Jack, or
Supercollider plugins.

By “full featured” we mean decoders that support all of the
signal processing needed for reproduction of Near-field Compen-
sated High-Order Ambisonics (NFC-HOA) as described by Daniel
[4]. This includes

• Phase-matched, band-splitting filters to enable the use of
separate low- and high-frequency decoding matrices, sup-
porting the duplex theory of human directional hearing

• Per-speaker, near-field compensation due to the fact that
most Ambisonic decoder design techniques assume the su-
perposition of plane waves, whereas the loudspeakers are
actually at a finite distance and radiating spherical waves

• Optional delay and level compensation to accommodate
loudspeakers at varying distances from the center of the ar-
ray

The first two of these features require frequency-dependent
processing, while the third is simply a broadband delay and gain
adjustment. While the need for these is acknowledged in the lit-
erature, there is little design guidance and even fewer correct im-
plementations of the necessary signal processng. We note that in
listening tests carried out by the authors, full-featured decoders
were always preferred over decoders that use simply a broadband
matrix multiplication.

2. PHASE-MATCHED, BAND-SPLITTING FILTERS

Human directional hearing operates over three frequency ranges
[5]

• Low (< 800Hz) using relative time-of-arrival cues (interau-
ral time difference, ITD),

• High (800 − 5000Hz) using relative intensity (interaural
level difference, ILD), and

• Very high (> 5 kHz), where pinna effects dominate

The first two are listener-independent and are based on the du-
plex theory of human directional hearing [6]. Consequently, Ambi-
sonics incorporates different criteria for low-frequency (LF) and
high-frequency (HF) reproduction [7, 8, 9]. Specifically, the fol-
lowing are necessary for optimal Ambisonic reproduction

• Constant amplitude gain for all source directions

• Constant energy gain for all source directions

• At low frequencies, correct reproduced wavefront direction
and velocity

• At high frequencies, maximum angular concentration of en-
ergy in the source direction

• Matching high- and low-frequency perceived directions

See [2, 3, 10, 11] for further details on how these criteria are used
to design and evaluate decoders.

In practical terms, this means that the weights of spherical
harmonic components for a given loudspeaker are different for low-
and high-frequencies, with the transition frequency between 300
and 800 Hz depending on the size and Ambisonic order of the array.
This places requirements on both the frequency and phase response
of the filters; specifically, the phase response must be the same
regardless of the relative gains of the LF and HF sections.

2.1. Design

The key idea is to treat the LF-to-HF transition as one would the
crossover network feeding the LF and HF units in a loudspeaker.
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We desire a gradual transition, so second-order filters are used

LF (s) =
1

1 + 2sT + (sT )2
(1)

HF (s) =
(sT )2

1 + 2sT + (sT )2
(2)

These have the -6 dB point at the crossover frequency ω = 1/T
rad/sec. If you combine these, the outputs cancel at the crossover
frequency, but reversing the polarity of the HF section makes its
phase match that of the LF section and there is no cancellation at
the crossover frequency. The output is

Total(s) =
1− (sT )2

1 + 2sT + (sT )2
(3)

=
(1 + sT )(1− sT )
(1 + sT )(1 + sT )

(4)

=
1− sT
1 + sT

(5)

which is a first-order, all-pass network. Hence, the phase response
is the same as the LF section and is maintained regardless of the
relative levels of the LF and HF sections.

Applying the bilinear transformation to implement these as
digital infinite-impulse response (IIR) filters, the second-order pole

H(s) =
1

1 + 2sT + (sT )2
(6)

becomes

H(z) =
b0 + b1z

−1 + b2z
−2

a0 + a1z−1 + a2z−2
(7)

where, for the LF section

b0 =
k2

k2 + 2k + 1
(8)

b1 = 2b0 (9)
b2 = b0 (10)
a0 = 1 (11)

a1 =
2(k2 − 1)

k2 + 2k + 1
(12)

a2 =
k2 − 2k + 1

k2 + 2k + 1
(13)

and, for the HF section

b0 =
1

k2 + 2k + 1
(14)

b1 = −2b0 (15)
b2 = b0 (16)

with a0, a1, a2 as in the LF section and

k = tan
πFc

Fs
(17)

and Fc is the crossover frequency in Hz and Fs is the sample rate
in samples/second.

Note that the denominator is the same for the LF and HF sec-
tions, so we implement it as a pair of transposed-direct-form-I fil-
ters (Figure 1), where the all-pole section is shared by both filters.1

1Placing the all-pole section first can cause numeric overflow in fixed-
point arithmetic. In that case, we recommend implementing it as two sepa-
rate filters, with the all-zero section first, followed by the all-pole section.

Figure 1: Transposed-Direct-Form-I implementation of a second-
order IIR digital filter. The two-pole section is on the left, followed
by a single two-zero section. In our implementation, there are two
two-zero sections for low- and high-frequencies respectively. Note
that the input signal comes in from the right and the output is on
the left. (Diagram taken from [12])

2.2. Implementation

Writing this in FAUST, note that the equations are transcribed into
the FAUST definitions directly, minimizing the possibility of er-
rors. Recall that the desired phase response is obtained by subtract-
ing the output of these sections, so that after scaling according to
the desired response the output signals must be differenced, not
summed. Figure 2 shows the measured frequency response and
phase response of the filters with Fc = 380Hz.

xover(freq ,n) = par(i,n,xover1) with {
k = tan(m.PI*float(freq)/m.SR);
k2 = k^2;
d = (k2 + 2*k + 1);

// shared all -pole section
a = (2*(k2 -1)/d, (k2 -2*k+1)/d);

// hf all -zero section
b_hf = (1/d,-2/d,1/d);

// lf all -zero section
b_lf = (k2/d, 2*k2/d, k2/d);

rsub(x,y) = y-x;
xover1 = _ : rsub ~ fir(a)

<: fir(b_lf), fir(b_hf)
: _, *(-1);

};

// shelf filter
shelf(freq ,g_lf ,g_hf) = xover(freq ,1) :

gain(g_lf), gain(g_hf):>_;

// fir filter
fir(c) = R(c) :>_ with {

R((c,lc)) = _<: R(c), (mem:R(lc));
R(c) = gain(c);

};

// bus with gains
gain(c) = R(c) with {

R((c,cl)) = R(c),R(cl);
R(1) = _;
R(0) = !:0;
R(float (0)) = R(0);
R(float (1)) = R(1);
R(c) = *(c);

};
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(a) low-pass filter (b) high-pass filter

Figure 2: Frequency and phase response of phase-matched, band-splitting filters with Fc = 380 Hz.

3. NEAR-FIELD COMPENSATION FILTERS

Ambisonics is based on a spherical-coordinate representation of
the soundfield. The mathematical formalism arises from solving
the Helmholtz wave equation

(∇2 + k)p = 0 (18)

in spherical coordinates, with p the pressure and k = 2πf/c. The
solution leads to the Fourier-Bessel description of the soundfield
[13]

p(kr, θ, φ) =

+∞∑
l=0

jljl(kr)

+l∑
m=−l

BlmYlm(θ, φ) (19)

where Blm are the Ambisonic signals with the time dependency,
e−jωt, implicit. In practice, we truncate the series after some num-
ber of terms, so the upper limit on the first sum becomes O, which
sets the Ambisonic order of the system. Note that the solutions
decompose into the product of an angular part, the real spherical
harmonics, Ylm(θ, φ), and a radial part, the spherical Bessel func-
tions, jl(kr). Only the radial part is frequency dependent.

Taking advantage of this decomposition into angular and radial
parts, most decoder design techniques assume that the loudspeak-
ers are at an infinite distance and are thus producing plane waves.
The decoder then uses separate filters to compensate for the fact
that the speakers are at a finite distance and producing spherical
waves. Unfortunately, many decoders simply ignore the radial ef-
fects completely.

In spherical waves, the pressure gradient arises from both the
direction of propagation, as in plane waves, (the real part) as well
as the 1/r decrease in pressure due to the spreading of energy
across the expanding spherical wavefront (the reactive part, normal
to the direction of propagation). This second factor is the cause
of the near-field effect, manifesting itself as a low-frequency boost
and phase shift.2 Because the higher-degree spherical harmonics

2The familiar proximity effect in directional microphones arises from
the same phenomenon.

represent higher-order spatial derivatives of the soundfield, the fre-
quency at which this effect starts, as well as the rate of change of
the phase, increases with degree.

3.1. Design

Our goal is to design filters for each Ambisonic degree that com-
pensate for the near-field effect and, hence, are called near-field
compensation (NFC) filters. In their seminal paper, Krall and Frink
[14] show that, with appropriate variable substitution, the Bessel
polynomials are solutions to the radial part of the wave equation.

The Bessel polynomials are solutions to the second-order dif-
ferential equation

x2yn
′′ + 2(x+ 1)yn

′ − n(n+ 1)yn = 0 (20)

and are readily obtained from the recurrence relation

yn(x) = (2n− 1)xyn−1(x) + yn−2(x) (21)

with y0(x) = 1 and y1(x) = x+ 1.
Following Daniel’s derivation [4], ignoring the broadband de-

lay and 1/r attenuation with distance from the source, the transfer
function of the near-field effect for an lth-degree Ambisonic signal
is the lth-order Bessel polynomial

Fl(s) =

l∑
m=0

(l +m)!

(l −m)!m!

(x
2

)m
(22)

where x = c/sr, c is the speed of sound, and s is the Laplace
transform variable. Hence to compensate for the near-field effect,
we need filters with the inverse transfer function.

To obtain the frequency response, we let s = jω = j2πf . We
note that at a distance, r, from a point source the real and reactive
parts of the soundfield are equal at frequency f = c/2πr, hence
the pressure gradient is 3dB too large and is phase shifted −45◦
[15, p. 311]. To compensate, the realized first-order filter should
have the complementary amplitude and phase response.
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3.2. Implementation

To implement these filters, Daniel transforms them from low-pass
to high-pass filters and uses the bilinear transformation to move
from the continuous s-domain to the discrete z-domain. He then
factors them into a series of second-order (SOS), direct-form II, IIR
filters, also called biquad filter sections. There are two problems
with this

• These are high-pass filters with a critical frequency much
lower than the sample rate, Fc << Fs. Implementing these
as digital biquads is ill-conditioned numerically, requiring
high-precision filter coefficients and computation.

• An important characteristic of Bessel filters is linear-phase
response over the passband of the filter, which preserves the
waveform shape. The frequency warping inherent in the
bilinear transform destroys the linear-phase characteristics
of the analog filter [16, p. 692].

Instead, we implement these as a series of second-order, digi-
tal state-variable filters [17], using the high-pass output from each
section to effect the low-pass to high-pass transformation and ob-
tain the near-field effect compensating filters. The filter comprises a
series of integrators and connected-feedback configurations that im-
plement the continuous s-domain transfer function directly, avoid-
ing numerical precision problems. The block diagram of the FAUST
implementation is shown in Figure 3.

g0 *

+

g1*

+

g2*

nfc2x(1.0f)(3.0f)(3.0f)

Figure 3: The block diagram of the digital state-variable filter
used to implement the near-field compensation filters. Consult the
FAUST listing for the calculation of the gi as a function of distance
and sample rate.

The first step is to generate the Bessel polynomial for a given
order (corresponding to the Ambisonic degree of the signal) and
then factor it into the product of linear and quadratic polynomials.3

We have implemented this in Symbolic Python (SymPy), which
is convenient for representing and manipulating polynomials and
supports arbitrary-precision arithmetic. The package [18] also in-
cludes functions that write out the FAUST code that implements the
filter for each Ambisonic degree, as well as a FAUST implementa-
tion of an NFC filter bank suitable for use on the input of another
decoder engine that lacks such filters.

3Because the coefficients of the Bessel polynomials are real (in fact, in-
tegers), we know, by the fundamental theorem of algebra, that the roots will
be real or occur in complex-conjugate pairs. The former give rise to linear
factors and the latter, quadratic factors. In practice, it is easier to factor the
reverse Bessel polynomial because the leading coefficient is 1, then take
the reciprocal of the roots to get the roots of the original polynomial, and
compose those into the first- and second-order factors.

The code to transform the polynomial coefficients into the gain
parameters for the state-variable filters, as well as the filters them-
selves, is implemented in FAUST.

// second -order state -variable filter
svf2(g0 ,g1 ,g2) = _ : *(g0)

: (((_,_,_):> _ <: +~_, _ ) ~ *(g1)
: +~_, _) ~ *(g2) : !,_ ;

// first -order NFC filter section
nfc1x(radius ,a1) = svf2(g0,g1 ,0)

with {
x = c/(2* float(radius)*SR);
b1 = a1 * x;
g0 = 1.0 / (1.0 + b1);
g1 = 0.0 - (2.0*b1) * g0;

};

// second -order NFC filter section
nfc2x(radius ,a1,a2) = svf2(g0,g1 ,g2)

with {
x = c/(2* float(radius)*SR);
b1 = a1 * x;
b2 = a2 * x * x;
g0 = 1.0 / (1.0 + b1 + b2);
g1 = 0.0 - (2.0*b1 + 4.0*b2) * g0;
g2 = 0.0 - (4.0*b2) * g0;

};

The filters are written out by the SymPy program directly in
terms of the coefficients of the factored polynomials. The listing
shows the fifth-order filter and how it is decomposed into a cas-
cade of two second-order sections followed by a first-order section.
The coefficients are computed to 38 digits to support FAUST’s
quad-precision mode. The frequency and phase responses for
r = 1meter are shown in Figure 4. The callouts show that at
f = c/2πr = 55.6Hz, the amplitude response is

√
2
2

(-3 dB) and
the phase response is 45◦, validating the digital realization of the
first-order filter. Similar checks were made for the higher order
filters.

nfc(5, distance) = _ :
nfc2x(distance ,
4.6493486063632904542320018653568278917 ,
18.156315313452237137021293936926965218):

nfc2x(distance ,
6.7039127983070662860328284984837266881 ,
14.272480513279948265230498114959597159):

nfc1x(distance ,
3.6467385953296432597351696361594454202):

_ ;

Because the required filter response is a function of the distance
to the given speaker, if the array includes speakers at different dis-
tances, each speaker will need its own NFC filter bank, in general
L×O where L is the number of loudspeakers, and O is the Ambi-
sonic order of the decoder. For example, a 50-loudspeaker dome
array supporting sixth-order playback will require 300 individual
NFC filter instances. If all of the loudspeakers are at the same dis-
tance (or nearly so), the NFC filters can be placed at the input to
the decoder, reducing the required number of NFC filters to one per
Ambisonic program channel—49 in the previous example, and in
general (O + 1)2 in the 3D case and 2O + 1 in the 2D case. This
is controlled by the global variables nfc_input and nfc_output.
The ADT will set these accordingly from the geometry of the loud-
speaker array.
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Figure 4: Measured amplitude and phase response of first- to fifth-order NFC filters for a speaker distance of 1 meters. The callouts show
that at f = c/2πr = 55.6Hz, the amplitude response is

√
2

2
(-3 dB) and the phase response is 45◦.

Because the number of filter instances can be large, it is im-
portant that the implementation is computationally efficient. One
of the advantages of FAUST is that it allows the author to focus
on the math and signal flow, leaving the task of producing highly-
optimized code to the FAUST compiler.

4. DISTANCE AND LEVEL COMPENSATION

In the derivation of the NFC filters, the broadband delay and 1/r
attenuation with distance were omitted. Best practice is to deter-
mine these as part of the overall in-situ calibration process for
the loudspeaker array [19]. When that is not possible, the ADT-
generated decoders include code that approximates these for free-
field (anechoic) propagation. The inclusion of these in the signal
processing is controlled by the global variables delay_comp and
level_comp.

delay(dc ,r) = R(dc ,r) with {
R(0,r) = _; // delay_comp off
R(1,0) = _; // delay_comp on, zero delay
R(1,float (0)) = R(1,0);
R(1,r) = @(meters2samples(r));
meters2samples(r) = int(m.SR * (float(r)/

float(c)) + 0.5);
};

level(lc ,r,rmax) = R(lc,r,rmax) with{
R(0,r,rmax) = _; // level_comp off
R(1,r,rmax) = *( float(r)/float(rmax));

};

delay_level(r) = R(r) with {
R((r,rl)) = R(r), R(rl);
R(r) = delay(delay_comp ,(r_max -r)) :

level(level_comp ,r,r_max);
};

where c is the speed of sound in meters/sec, r is a list of the dis-
tances to each loudspeaker in meters, and r_max is the largest value
of r in the list. We note that many widely-used decoder plugins
skip this entirely, which can lead to confusing results when some
loudspeakers, typically the overhead ones, are somewhat closer to
the listener than others. In this case, the precedence effect draws the
sound to the nearest loudspeakers [20] and any sense of direction
breaks down completely.

5. CONCLUSIONS

We have presented the theory, design, and implementation of ap-
propriate filters for use in decoders for Near-field Compensated
High-Order Ambisonics. These are available as free-standing mod-
ules, as well as being an integral part of the decoders produced
by the Ambisonics Decoder Toolbox. All of the code discussed
is open source and is available from The FAUST code, in particu-
lar, is distributed under the BSD 3-Clause license to facilitate its
integration into and use with other systems.

One key benefit of using FAUST is that we can almost directly
transcribe the math into the implementation and then rely on the
compiler to produce an efficient realization. This has resulted in
code that is easier to maintain and verify. The other key advantage
is that a single implementation can target a wide variety of host
systems, with the compiler and architecture files handling all the
low-level details transparently.

A decade ago, the present authors wrote the paper “Is My
Decoder Ambisonic?” [21] in reaction to the poor quality of the
Ambisonic decoders available at the time. It discussed the the-
ory, design, and testing of first-order decoders, but did not provide
implementations that could be employed directly in widely-used
audio processing environments. The current situation is somewhat
better, although we still see many poorly-performing or incomplete
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decoders in use. The current work extends our previous efforts to
high-order Ambisonics and provides implementations that can be
used in a wide variety of audio processing systems.
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